FB2250 Series Instrument PC2250 Utility Software

Amendment Record

FB2250 Series Instrument PC2250 Utility Software Document 51214

Manufactured by Fairbanks Scales Inc.

Created 03/2009

Revision 1	$03 / 2009$	
Released Manual		
Revision 2	$05 / 2009$	Added CC and ETL Approvals
Revision 3	$06 / 2009$	Added MC Approval, IP69K, and Panel Mount Models
Revision 4	$07 / 2009$	Added power on/off instruction
Revision 5	$03 / 2010$	Updated for Rev 2 Software
Revision 6	$05 / 2011$	Added fieldbus information.
Revision 7	$06 / 2012$	Added PC2250 information.
Revision 8	$08 / 2013$	Corrected grammatical errors and clarification of charts. Revision 9
	$05 / 2015$	Updated battery specifications, product names, 4-20mA definitions, and added ControlNet information.
Revision 10	$08 / 2015$	Added FB225X TCP configuration instructions.
Updated Fieldbus information		

Disclaimer

Every effort has been made to provide complete and accurate information in this manual. However, although this manual may include a specifically identified warranty notice for the product, Fairbanks Scales makes no representations or warranties with respect to the contents of this manual, and reserves the right to make changes to this manual without notice when and as improvements are made.

It is the responsibility of the requesting party to develop, maintain, install, and connect networking devices and general network connectivity as it applies to the originating party's network. No warranty or guarantee, expressed or implied, concerning the network, its design, its installation, or operational characteristics has been offered by Fairbanks Scales.

Fairbanks Scales shall not be liable for any loss, damage, cost of repairs, incidental or consequential damages of any kind, whether or not based on express or implied warranty, contract, negligence, or strict liability arising in connection with the design, development, installation, or use of an intended network or scale instrument.

The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Fairbanks Scales is under license. Other trademarks and trade names are those of their respective owners.

© Copyright 2009-2020

This document contains proprietary information protected by copyright. All rights are reserved; no part of this manual may be reproduced, copied, translated, or transmitted in any form or by any means without prior written permission of the manufacturer.

TABLE OF CONTENTS

SECTION 1: GENERAL INFORMATION 7
1.1. Model Descriptions 7
1.2. Main Product Features 7
1.3. Specifications 8
1.3.1. Instrument Approvals 8
1.3.2. Specifications 8
1.3.3. Settings 9
1.3.4. Weight Accumulator. 9
1.3.5. Outputs 9
1.3.6. AC Operation 9
1.3.7. DC Models 10
1.3.8. Out of Range Warnings 10
1.3.9. External Printers 10
1.3.10. Environment. 10
1.3.11. PC2250 10
1.3. Accessories 11
1.4. Battery Installation 11
1.5. Powering up the FB2250 12
1.6. Flow Charts 12
SECTION 2: FRONT PANEL PROGRAMMING 13
2.1. Front Panel Programming Parameters. 13
2.2. Front Panel Programming 14
2.2.1. Programming and Setting Time 14
2.2.2. Programming the Date 14
2.2.3. Display Battery Voltage 15
2.2.4. Programming the Sleep Function 15
2.2.5. Clearing the Accumulator 15
2.2.6. Display Operating Mode Data 16
2.2.7. 4-20mA Output Setup 16
2.2.8. Programming the 4-20mA Analog Output Weighing Mode 17
2.2.9. Programming the $4 m A$ Weight Value 17
2.2.10. Programming the 20 mA Weight Value 18
SECTION 3: OPERATION 19
3.1. Setup Menu Programming Parameters - Version 2.0+ 19
3.2. Setup Menu Programming 20
3.2.1. Programming and Setting Time 20
3.2.2. Programming the Date 20
3.2.3. Programming Port 1 21
3.2.4. Programming the Port 1 Output Type 21
3.2.5. Programming Port 1 Baud Rate 22
3.2.6. Programming Port 1 Data Bits 22
3.2.7. Programming Port 1 Parity Setting 22
3.2.8. Programming Port 1 Stop Bits 23
3.2.9. Programming Port 2 23
3.2.10. Programming the Port 2 Output Type. 23
3.2.11. Programming Port 2 Baud Rate 24
3.2.12. Programming Port 2 Data Bits 24
3.2.13. Programming Port 2 Parity Setting 24
3.2.14. Programming Port 2 Stop Bits 25
3.2.15. Programming the Back Light Options 25
3.2.16. Programming the Back Light Timing 25
3.3. Configuration Menu Programming Parameters 26
3.3.1. Programming the Scale Capacity 27
3.3.2. Programming the Scale Units 27
3.3.3. Programming the Primary Unit 28
3.3.4. Programming the Automatic Zero Tracking Band 28
3.3.5. Programming the Motion Band 28
3.3.6. Programming the Zero Range 29
3.3.7. Programming the Division Size 29
3.3.8. Programming the Filter Setting 29
3.3.9. Programming the Tare Setting 30
3.3.10. Programming the Display Update Rate 30
3.4. Application Menu Programming Parameters 31
3.4.1. Microvolts Per Division 31
3.4.2. Programming the 4-20mA Analog Output 31
3.4.3. Programming the Piece Count Feature 32
3.4.4. Programming the Accumulator Feature. 32
3.4.5. Programming the Peak Hold Feature 32
3.5. Operating Mode 33
3.5.1. Front Panel Key Functions 33
3.5.2. Operating Procedures. 34
3.5.3. Instrument Weighing Functions 35
3.5.4. Basic Weighing 35
3.5.5. Gross Weighing 35
3.5.6. Net Weighing 35
3.5.7. Gross/Tare/Net Weighing 36
3.6. Weight Accumulation 36
3.6.1. Weight Accumulation 36
3.6.2. Printing Weight Accumulations 37
3.6.3. Number of Accumulations. 40
3.6.4. Clearing the Accumulators. 40
3.6.5. Piece Counting 41
3.6.6. Piece Count and Total 41
3.6.7. Peak Weight 42
3.6.8. Display Total Number of Pieces 43
SECTION 4: ACCESSORIES 44
4.1. Attaching an external power supply 44
4.1.1. Requirements 44
4.1.2. Programming the Weigh Mode that the Output Tracks 44
4.1.3. Programming the $4 m A$ Weight Value 45
4.1.4. Programming the 20 mA Weight Value 45
4.2. Fieldbus 46
4.2.1. ETHERNET/IP Addressing 46
4.3. Fieldbus Connections 47
4.4. PROFIBUS®-DP Diagnostic LEDS: 50
4.5. DeviceNet ${ }^{T M}$ Diagnostic LEDS: 51
4.6. Modbus® Diagnostic LEDs: 51
4.7. ETHERNET / IP Diagnostic LEDS: 52
4.8. ControlNet 53
SECTION 5: SERIAL COMMUNICATION WIRING 55
5.1. JP3 Jumper Configuration: 55
5.2. TB4 Connections, COM1 (A), COM2 (B), and COM2 (C) 55
SECTION 6: PRINTER INSTALLATION 56
6.1. 3550 Tape Printer 56
6.2. TM-U220 Tape Printer 56
6.3. Okidata 186 T Form Printer 57
6.4. Okidata 420 Form Printer 61
6.5. TM-U295 Ticket Printer 64
6.6. TM-U590 Ticket Printer 65
6.7. 1600 Series Remote Display 66
6.8. FB2250 Remote Display 67
SECTION 7: PC2250 UTILITY SOFTWARE 68
7.1. Introduction 68
7.2. Wiring 68
7.3. Communication Settings 68
7.4. Menu Bar 70
7.5. Configuration 72
7.6. Calibration. 73
7.7. First time Connection Using PC225X PC Utility and FB225X ETHERNET TCP/IP option 74
7.8. Fieldbus 78
7.9. $4-20 \mathrm{~mA}$ 81
7.10. Custom Output: Settings 82
7.11. Custom Output: Load 83
7.12. Custom Output: Build 84
7.13. Custom Output: Tokens 85
7.14. Custom Output: Weights 87
7.15. Format tickets 88
7.16. Printed Examples: 89
APPENDIX I: DATA OUTPUT FORMATS 92
A. General Notes 92
B. Fairbanks/ Toledo Continuous Output. 92
B. Cardinal 738 Continuous Scoreboard Output 95
C. Weightronics WI-120 Continuous Output 95
D. Condec Continuous Output 96
E. Demand Output - Default 96
F. Continuous Output - Default 97
G. PLC (Do not use.) 98
H. UPS 99
I. P Ship 100
I. P Ship, Continued 101
APPENDIX II: ASCII CHART. 102
APPENDIX III: FB2250 REMOTE DISPLAY WIRING 103
APPENDIX IV: REMOTE DISPLAY ACTIVE KEYS. 104
APPENDIX V: REMOTE PC COMMANDS 105
APPENDIX VI: FB2250 PANEL MOUNT DIMENSIONS 106

SECTION 1: GENERAL INFORMATION

1.1. Model Descriptions

The FB2250 is a general-purpose weighing instrument that can be used with a wide variety of platforms and load receivers and is available in nine (9) different configurations.

MODEL	PART NO.
- FB2250 Series ABS, AC Power	29250
- FB2250 Series ABS, AC/Battery Power	29561
- FB2250 Series SS, AC Power	29251
- FB2250 Series SS, AC/Battery Power	29562
- FB2250 Series SS, AC Power, No Bracket	29563
- FB2250 Series SS, AC/Battery Power, No Bracket	29564
- FB2250 Series SS, AC Power, No Bracket, IP69K	29013
- FB2250 Series SS, AC Power, IP69K	28990
- FB2250 Series, AC Power, Panel Mount	29803

1.2. Main Product Features

Major features of the Instrument include the following.

- Push-button programming and calibration.
- Program data is stored in battery supported RAM and backed up in flash memory.
- The battery should be replaced every 12 months.
- The FB2250 series instrument features a large one-inch high green backlit LCD weight display, which can be tilted up or down to accommodate different lighting conditions. Microprocessor controlled design allows the instrument to be rapidly programmed at installation to meet the specific requirements of the application.
- The obtainable accuracy meets Handbook 44 requirements, and the instrument is approved for commercial application up to 10,000 divisions. A maximum of 100,000 displayed divisions can be programmed for non-commercial applications.
- A computer utility software program PC2250 is available, via download from Fairbanks Intranet for programming via computer, and is required for certain features such as custom ticket formatting.

1.2. Main Product Features, Continued

- The PC2250 software utility program can also upload and modify the instruments set-up, configuration, and calibration. Saved information can be downloaded from a computer to the FB2250 Series in the event of a catastrophic failure.
- The instrument provides two (2) serial communication ports to provide communication to various types of peripheral devices for RS232, RS422, RS485, and 20 mA data outputs.
- Optional accessories include a 4-20mA analog output, Bluetooth® serial adapter, and five different fieldbus devices; PROFIBUS®, DeviceNet ${ }^{T M}$, ControlNet ${ }^{\top M}$, Modbus® and ETHERNET/IP.

1.3. Specifications

1.3.1. Instrument Approvals

- CC	09-023
- MC	AM-5720
- ETL	ETL Listed
- Conforms to ANSI/UL STD 60950-1	
- Certified to CAN/CSA C22.2 STD NO. 60950-1-03	

1.3.2. Specifications

- ENCLOSURE	ABS, Black NEMA 1, Stainless Steel NEMA 4X Desk and Wall Mount
- DISPLAY	6 digits, 1 inch LCD, Green Backlight
- FRONT PANEL KEYS	On/Off, Units, Zero, B/G, Net, Tare and Print
- UNITS	lbs, oz, kg, g and Ibs/oz, or custom
- GRADUATION SIZE	0.0001 to 50
- AD CONVERSION	66 per second
- LOAD CELL EXCITATION	5 Volts DC
- SENSITIVITY	$1 \mu \mathrm{l} / \mathrm{d}$ (microvolt/division)
- LOAD CELLS	Eight (8) 350 ohm or Sixteen (16) 1000 ohm
- DISPLAYED DIVISIONS	10,000 Commercial and $100,000 \mathrm{~d}$ Non-Commercial
- CAPACITIES	Programmable to 999999

1.3. Specifications, Continued

1.3.3. Settings

\bullet Zero Range	$\mathbf{2} \%$ or 100%
\bullet Auto Zero Tracking	OFF, $0.5,1$ or 3 divisions
\bullet Balance	OFF, $0.5,1$ or 3 divisions
\bullet Filter	Slow, Cattle, Standard, and Fast
\bullet Display Update Rate	$0.2,0.4$, and 0.8 seconds

1.3.4. Weight Accumulator

- Capacity

Up to 99,999 accumulations, or 999,999 totaled weight units.

- Printed or viewed

1.3.5. Outputs

- PORT 1	Bidirectional Serial Port. Settings include OFF, RS232, RS422, and RS485. RS232 has 30+ updates a second
- PORT 2	Port 2 is used to interface to the PC2250 program, OR to provide 20mA passive, RS232, RS422*, or RS485.

*Port should be set to RS485. Note jumper and wiring connections listed in Section 5:Serial Communication Wiring.

1.3.6. AC Operation

The FB2250 is designed to operate from $\mathbf{8 0}$ to $\mathbf{2 6 0}$ volts AC, $\mathbf{5 0}$ to $\mathbf{6 0}$ Hertz with Auto Switching capability.

- 110 Volt AC Operation
- The FB2250 is factory wired for 110 VAC and requires a three-prong grounded outlet.
- 220 Volt AC Operation
- Rewire the power cord according to the following diagram:

- 1.5 watts maximum
- The FB2250 is designed to operate from 80 to 260 volts AC, 50 to 60 Hertz

1.3.7. DC Models

- Batteries	Five (5) Size "D" Alkaline batteries @ 1.5 Volts DC each.
- Battery Life	Battery usage time can be adversely affected by battery storage, battery capacity and battery brand. To maximize battery life, serial Ports 1 and 2 should be switched OFF, if not used. (1) 350Ω load cell, Back Light $=$ OFF, RS232 ports $=$ OFF. \qquad hours (4) 350Ω load cell, Back Light $=$ ON, RS232 ports $=$ OFF. \qquad hours (4) 350Ω load cell, Back Light $=$ OFF, RS232 ports $=$ OFF. \qquad
- Internal Battery	- Should be replaced every 12 months using Panasonic CR 1220 3 V or equivalent.

1.3.8. Out of Range Warnings

- HiCAP	Scale input is over capacity
$\bullet------$	Displayed weight exceeds 6 digits
- Sleep Mode	Settings include OFF, 1,2,5,10,20, and 30 minutes
- Time and Date	Battery Maintained

1.3.9. External Printers

- Tape Printers - Citizens IDP 3550 and Epson Model TM-U220 Tape Printers
- Serial Form Printers - Okidata 184 \& 186 Serial Form Printer

Okidata 420 Serial Form Printer

- Ticket Printers - Epson Models TM-U295, TM-U590 Ticket Printers

1.3.10.Environment

- Temperature	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$
- Storage Temp.	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$

1.3.11.PC2250

- Computer software utility program is available for download using the Fairbanks Intranet.
- PC2250 is required for setting certain aspects of programming, such as custom Units and custom ticket formatting.

1.3. Accessories

Optional accessories include the following.

FIELDBUS DEVICES

- DeviceNet ${ }^{\text {TM }}$	• ControlNet $^{\text {T"M }}$	• PROFIBUS®-DP	• Modbus®	• ETHERNET/IP

4-20MA ANALOG CURRENT LOOP OUTPUT

- 16 bit Resolution and Monotonicity	$\bullet 0.01 \%$ Non-Linearity
- Isolated 4 mA to 20 mA	\bulletFront Panel Programmable or via PC2250 utility software program

BLUETOOTH ${ }^{\circledR}$ TECHNOLOGY INTERFACE

- Utilizes either Port 1 or Port 2 Serial Output. RS232 serial Interface to Bluetooth Interface. Range 100 meters (328 feet).
- The Bluetooth option will operate either as a Client or Server depending on which device the FB2250 is connected.
- If connected to a printer, the FB2250 will be a Server.
- If connected to a PC, the Instrument will be a Client.

1.4. Battery Installation

STAINLESS STEEL ENCLOSURE

ABS ENCLOSURE

Stainless Steel Instrument: Unscrew the black plastic end caps and insert 5 alkaline " D " cells as shown above.

ABS Instrument: Unscrew the two large knurled screws on the back of the Instrument and remove the battery cover. Insert 5 alkaline "D" cells as shown above. Industrial "D" Size battery Energizer EN95 or equivalent is recommended for maximum operating time.

1.5. Powering up the FB2250

Press the ON / OFF Key for 1 to 2 seconds. The Instrument will display " 888888 " followed by a "1234567890" character display moving from right to left, followed by the revision of software. Upon completing the warm-up, the FB2250 will display the actual weight on the scale.

To turn the FB2250 off, press the ON / OFF key for 1 to 2 seconds.

1.6. Flow Charts

Dashed line boxes used in the flowchart indicate that the menu item availability is dependent upon programming performed elsewhere. For example, "clearing the accumulator" will not be available if accumulation has not been enabled.

SECTION 2: FRONT PANEL PROGRAMMING

2.1. Front Panel Programming Parameters

Front Panel Programming

Operating ZERO enters the change Mode
Operating UNITS scrolls through the selections
Operating ZERO saves the change

NOTE $\begin{array}{cl}\text { Press Zero } \\ \text { key }\end{array} \quad \begin{aligned} & \text { will Clear the Accumulator/Total Register/ Peak } \\ & \text { Weight parameters and set the Instrument to } \\ & \text { the Net/Gross Mode }\end{aligned}$

NOTE \begin{tabular}{c}
Press Units

key

will not Clear the Accumulator/Total Register/ Peak

Weight parameters and set the Instrument to

the Net/Gross Mode
\end{tabular}

2.2. Front Panel Programming

2.2.1. Programming and Setting Time

1. Press and hold the PRINT key for three (3) seconds.
2. Current Time Format will display:

- 12hr A - 12 hour clock, currently AM.
- 12hr P - 12 hour clock, currently PM.
- 24 hour - Military time, (1:00 PM = 1300 hours).

3. Press the ZERO key to edit or UNITS key to skip.

- Press the UNITS key to toggle through the available selections.
- Press the ZERO key to enter the selection.

4. The display indicates Set-ti, and then shows the current time in HHMMSS format.
5. Press the ZERO key to edit or UNITS key to skip.

- The Hour digits will blink.
- Press UNITS key to increment to the hour setting.
- Press ZERO key.
- The Minutes digits will blink.
- Press UNITS key to increment to the minutes setting.
- Press ZERO.
- The Seconds digits will blink.
- Press UNITS to increment to the seconds setting.
- Press ZERO to enter the time settings.

6. When complete, Program will advance to programming the date.

2.2.2. Programming the Date

1. Set-dA displays, followed by the current date setting in MM-DD-YY format.
2. Press the ZERO key to edit or UNITS key to skip.

- The Month digits will blink.
- Press UNITS key to increment to the desired month setting.
- Press the ZERO key to advance to the day setting.
- The Day digits will blink.
- Press UNITS key to increment to the desired day setting.
- Press the ZERO key to advance to the year setting.
- The Year digits will blink.
- Press UNITS key to increment to the desired year setting.
- Press the ZERO key to save the date setting.

3. When complete, the FB2250 will return to the weight mode.

2.2.3. Display Battery Voltage

1. Press and hold the TARE key for three (3) seconds.

- The battery current or power supply voltage displays
- 8.3 VDC nominal

2. When TARE key is released, the FB2250 will return to the weight mode.

2.2.4. Programming the Sleep Function

This function serves to prolong battery life by turning off the Instrument. When there is no activity, the Sleep Mode activates according to the programmed time frame.
Activity is when weight is applied to the scale exceeding the motion band setting, pressing a key, or receiving a polling request on a communication port.

1. Press and hold the BG/Net key for three (3) seconds.
2. The display will indicate SLEEP, and then display the current setting.

- Settings in minutest include OFF, 1, 2, 5, 10, 20, 30.

3. Press the ZERO key to edit or UNITS key to skip.

- Press UNITS key to scroll through available settings.
- Press ZERO key to enter the selection.

4. When complete, the FB2250 will return to the weight mode, if the Accumulator function is not active.

2.2.5. Clearing the Accumulator

The Accumulator(s) to be cleared depend on whether the Operating Mode is programmed to Accumulation or Piece Count and Total. (See Section 3.5 Operating Mode for details)

- Press and hold the BG/Net key for three (3) seconds.
- Press UNITS key until CLr.ACC displays on the Instrument.

1. Press the ZERO key to edit or UNITS key to skip.

- Press UNITS key to toggle the available settings.
- CIr.YES (Clear the Accumulator)
- CLr.NO (Do NOT Clear the Accumulator)
- Press the ZERO key to enter the selection.

2. When complete, the FB2250 will return to the weight mode.

2.2.6. Display Operating Mode Data

NOTE: These options are conditional upon programming the Operating Mode (See Section 3.5 Operating Mode for details)

1. Press and hold the ZERO key for three (3) seconds.
2. Depending upon how the FB2250 was programmed in the Operating Mode, one of these conditions will occur:

- ACCUMULATION:
- The display will alternate between the number of Gross weight Accumulations " n " and the total Gross weight Accumulated for thirty (30) seconds, and then return to the Weigh Mode.
- The caret (v) above the printed Total Weight Accumulated legend of the display will be seen.
- Press the B/G NET key
- The display will alternate between the number of Net weight Accumulations " n " and the total Net weight Accumulated for thirty (30) seconds, and then return to the Weigh Mode.
- The caret (v) above the printed Total Weight Accumulated and NET legends of the display will be seen.
- PIECE COUNT or PIECE COUNT AND TOTAL:
- After completing an initial piece sampling
- When in the NET Weigh Mode (with container), the number of pieces " n " on the scale at the time the key is pressed will be displayed for 30 seconds.
- When in the Gross Weigh Mode (without container), the number of pieces " n " on the scale at the time the key is pressed will be displayed for 30 seconds.
- PEAK HOLD STABLE or PEAK HOLD UNSTABLE; displays time, date, and peak weight, then times out to the Weigh Mode in thirty (30) seconds.

3. Pressing the UNITS key will skip time out and immediately exit to the Weigh Mode.

2.2.7. 4-20mA Output Setup

WARNING: Do not physically install the $4-20 \mathrm{~mA}$ card until the instrument is configured and calibrated (weight) to the platform.

The $4-20 \mathrm{~mA}$ analog output is passive, therefore it requires the receiving element to supply the loop with a dedicated, isolated power source from $7-24 \mathrm{~V}$ DC. The output is linear throughout the range from 4 mA to 20 mA and can be programmed to increase (upweigh) or decrease (downweigh) as weight is increased.

Connections are as follows:

Pin 1	$+4-20 \mathrm{~mA}$
Pin 2	$-4-20 \mathrm{~mA}$

Above is an example of wiring with a customersupplied, isolated and dedicated power source.

- Recommend use with a 100-150 Ω resistor, if needed.

2.2.8. Programming the 4-20mA Analog Output Weighing Mode

Setting up the 4-20mA Option depends on how it is enabled and configured.

1. Press and hold UNITS for three (3) seconds.
2. 4-20 displays, followed by the current setting

- GROSS or NET.
- The $4-20 \mathrm{~mA}$ analog output will track the selection.
- It will continue to track the selection regardless of the active weight display mode of the FB2250.

3. Press the ZERO key to edit or the UNITS key to skip.

- Press the UNITS key to toggle the available settings.
- Press ZERO to enter the selection.

When complete, Program will advance to programming the $4-20 \mathrm{~mA} 4 \mathrm{~mA}$ setting.

2.2.9. Programming the 4mA Weight Value

1. 4.20 Lo displays, followed by the current setting.
2. If the output needs fine-tuned, use the TARE or PRINT keys to adjust. Adj Lo displays.
3. Press ZERO to return to the weight settings.
4. Press the ZERO to edit or press the UNITS key to skip.
a. The most significant digit will be blinking, operate the UNITS key to increment the number.
b. When the desired value has been obtained, Press the ZERO key.
c. The next less significant digit will then blink, operate the UNITS key to increment the number.
d. Repeat steps b and c until the least significant digit has been completed.

This weight value will result in a 4mA Output.
5. When complete, the program will advance to the 20 mA menu.

2.2.10.Programming the 20 mA Weight Value

1. 4.20 Hi displays, followed by the current setting.
2. If the output needs fine-tuned, use the TARE or PRINT keys to adjust. Adj Hi displays.
3. Press ZERO to return to the weight settings.
4. Press the ZERO key to edit or press the UNITS key to skip.
a. The most significant digit will be blinking, operate the UNITS key to increment the number.
b. When the desired value has been obtained, Press the ZERO key.
c. The next less significant digit will then blink, operate the UNITS key to increment the number.
d. Repeat steps b and c until the least significant digit has been completed.

This weight value will result in a 20 mA Output
5. When complete, the FB2250 will return to weigh mode.

NOTE: Fine tune adjustment is available in firmware version 2.04 and after.

SECTION 3: OPERATION

3.1. Setup Menu Programming Parameters - Version 2.0+

Set-up Menu Version 2.0 +

Operating ZERO enters the change Mode
Operating UNITS scralls through the selections Operating ZERO saves the change Operating B/G NET backe up through selectlons

Internal	$\mathbf{S E t - U P} \rightarrow$	12hr A	12hr P	24hour
Program	Y			
	$\begin{gathered} \text { SEt-ti } \\ \gamma \end{gathered}$			
	SEt-dA			
	Port 1	oFF	232	485*
	\downarrow	button	rd2250	P Shlp
	Output \rightarrow	Auto	rd2500	OFF
		$\begin{aligned} & \text { Poll } \\ & \text { rd2200 } \end{aligned}$	$\begin{aligned} & \text { rd2800 } \\ & \text { rd5200 } \end{aligned}$	
	Baud 1	2400	19200	115200
		4800	38400	11
	\checkmark			
	PArty	P nonE	P odd	P EuEn
	StoP	1	2	
	γ			
	Port 2	$\begin{aligned} & \text { off } \\ & 232 \end{aligned}$	$\begin{aligned} & \text { 485* } \\ & \text { cloop } \end{aligned}$	OFF
	\checkmark	OFF	Poll	UPS
	Output	Auto	r Disp	
	\checkmark	Contin	P Ship	
	Baud 2	2400	19200	115200
		4800 9600	38400 57600	
	PArity	P none	P odd	P EuEn
	Pr			
	StoP	1	2	
	BL SEt	bLOn	bLtr1	bL Off
		bL Pos	bLtr2	
	Blt SEt			
		Blt 30	Blt 300	

[^0]
3.2. Setup Menu Programming

1. Press the INTERNAL PROGRAM SWITCH until Setup displays.
2. Press the UNITS key.

3.2.1. Programming and Setting Time

1. The current display format setting will display

- 12 hr A -12 hour clock, currently AM.
- 12hr P-12 hour clock, currently PM.
- 24 hour - Military time (1:00 PM = 1300 hours).

2. Press the ZERO key to edit or UNITS key to skip.

- Press the UNITS key to toggle through the available selections.
- Press the ZERO key to save the selection.

3. Set-ti displays, followed by the current time setting in HHMMSS format.
4. Press the ZERO key to edit or UNITS key to skip.

- The Hour digits will blink.
- Press UNITS key to increment to the hour setting.
- Press ZERO key.
- The Minutes digits will blink.
- Press UNITS key to increment to the minutes setting.
- Press ZERO.
- The Seconds digits will blink.
- Press UNITS to increment to the seconds setting.
- Press ZERO to enter the time settings.

5. When complete, the program will advance to Programming the Date.

3.2.2. Programming the Date

1. Set-dA displays, followed by the current date setting in MM-DD-YY format.
2. Press the ZERO key to edit or UNITS key to skip.

- The Month digits will blink.
- Press UNITS key to increment to the desired month setting.
- Press the ZERO key to advance to the day setting.
- The Day digits will blink.
- Press UNITS key to increment to the desired day setting.
- Press the ZERO key to advance to the year setting.
- The Year digits will blink.
- Press UNITS key to increment to the desired year setting.
- Press the ZERO key to save the date setting.

3. When complete, the program will advance to Port 1.

3.2.3. Programming Port 1

1. Port 1 displays, followed by the current protocol setting.

- OFF - com port is not active.
- rS232 - using RS232 protocol
- rS485 - using RS485 or RS422 protocol

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO to select an option.

3. When complete, the program will advance to Port 1output.

NOTE: See Section 5.2. TB4 Connections, COM1 (A), COM2 (B), and COM2 (C)

3.2.4. Programming the Port 1 Output Type

1. Output displays, followed by the current output type setting:

- Button -Using the Print key.
- Auto- Activated by stable weight above 10d, reset by return to half of printed weight.
- Contin -Continuous Output. Once every display update rate.
- Poll -Demand Output by receipt of CR or programmed poll character
- Rd2200 -Remote Display for FB2200
- Rd2250 -Remote Display for FB2250/55
- Rd2300 -Remote Display for 2300
- Rd2500 -Remote Display for 2500
- Rd2800 -Remote Display for 2800
- Rd5200 -Remote Display for 5200
- P Ship -Used for FedEx Shipping Software
- UPS -Used for UPS Shipping Software
- OFF -Output is not active

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO to select an option.

3. When complete, the program will advance to Port 1 Baud Rate.

3.2.5. Programming Port 1 Baud Rate

1. Baud 1 displays, followed by the current baud rate setting.

- 2400
- 4800
- 9600
- 19200
- 38400
- 57600
- 115200

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 1 Data Bits.

3.2.6. Programming Port 1 Data Bits

1. d-bitS displays, followed by the current data bits setting:

- 8
- 7

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 1 Parity Setting.

3.2.7. Programming Port 1 Parity Setting

1. Parity displays, followed by the current parity bit setting:

- P None - no parity bit
- P Odd - odd parity bit
- P Even - even parity bit

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 1 stop bits.

3.2.8. Programming Port 1 Stop Bits

1. Stop displays, followed by the current stop bits setting:

- 1
- 2

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 2.

3.2.9. Programming Port 2

1. Port 2 displays, followed by the current protocol setting:

- OFF - com port is not active
- rS232 - Using RS232 protocol
- rS485 - Using RS485 or RS422 protocol
- Cloop Using 20mA Current Loop (passive)

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 2 Output.

3.2.10.Programming the Port 2 Output Type

1. Output displays, followed by the current output type setting:

- Auto - Activated by stable weight above 10d, reset by return to half of printed weight.
- Contin - Continuous Output. Once every display update rate.
- Poll - Demand Output by receipt of CR from external source.
- r Disp - 1600 Series Remote Display output format
- P Ship - Used for Fed Ex Shipping Software
- UPS - Used for UPS Shipping Software
- OFF - output is not active.

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 2 baud rate.

3.2.11.Programming Port 2 Baud Rate

1. Baud 2 displays, followed by the current baud rate setting.

- 2400
- 4800
- 9600
- 19200
- 38400
- 57600
- 115200

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 2 Data Bits.

3.2.12. Programming Port 2 Data Bits

1. d-bitS displays, followed by the current data bits setting:

- 8
- 7

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 2 Parity Setting.

3.2.13. Programming Port 2 Parity Setting

1. Parity displays, followed by the current parity bit setting:

- P None - no parity bit
- P Odd - odd parity bit
- P Even - even parity bit

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Port 2 stop bits.

3.2.14.Programming Port 2 Stop Bits

1. Stop displays, followed by the current stop bits setting:

- 1
- 2

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Back light options.

3.2.15. Programming the Back Light Options

1. The current setting displays:

- bL On - Back light always ON.
- bL POS - Back light only on with a positive weight on the scale, otherwise off.
- bL tr1 - Back light ON with a positive weight on the scale until weight has been stable for the amount of time selected at the following program step.
- bL tr2 - Back light ON with a positive weight until returned to zero and stable for the amount of time selected at the following program step.
- bL OFF - Back light always OFF.

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Back light timing.

3.2.16. Programming the Back Light Timing

1. The current setting displays:

- bLt 15 - back light remains illuminated 15 seconds
- bLt 30 - back light remains illuminated 30 seconds
- bLt 60 - back light remains illuminated 60 seconds
- bLt 300 - back light remains illuminated 300 seconds

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to Configuration Menu.

3.3. Configuration Menu Programming Parameters

ConFig Menu

3.3. Configuration Menu Programming Parameters, Continued

1. Press the INTERNAL PROGRAM SWITCH until ConFig is displayed.
2. Press the UNITS key.

3.3.1. Programming the Scale Capacity

1. CAP displays, followed by the current scale capacity setting with a caret symbol (\mathbf{V}) located above the printed unit legend of the display representing the current primary unit setting.
2. Press ZERO key to edit, or UNITS key to skip.

- Most significant digit will blink
- Press UNITS key to scroll through available settings.
- Press ZERO key to enter and advance to next digit
- Repeat the process until the least significant digit is selected.

3. When complete, the program will advance to scale units.

NOTE: Capacity can be up to six (6) displayed digits (i.e. 999999). All six digits must be entered to advance to the next parameter.

3.3.2. Programming the Scale Units

1. UnitS displays, and the current setting with a caret symbol (\mathbf{v}) above the printed unit(s) legend of the display.
2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- The caret will automatically move to the choices.
- Available selections include any single or combinations of:
- lb-pounds
- kg - kilograms
- oz-ounces
- g-grams
- Press ZERO key to save the selection.

3. When complete, the program will advance to programming primary unit.

NOTES:

1. lb-oz and custom units are also available but can only be programmed with the PC2250 software utility (see Section 7.)
2. The lb-oz and custom unit settings cannot be used as the Primary Unit in the FB2255. They are not legal for trade.
3. When using lb-oz, the FB2250 must be calibrated in lb or oz, and not lb-oz.
4. When programming for lb-oz, the division size must be 0.2 or smaller; 0.5 or
higher will not convert to lbs/oz, the instrument will display dashes.
5. When $\mathrm{lb}-\mathrm{oz}$ units are active, both the lb and oz caret symbols are on.
6. When custom units are active, all caret symbols are off.

3.3.3. Programming the Primary Unit

This option sets up the Unit parameter for scale capacity, calibration, and the default unit when the instrument is powered up.

1. P-Unit displays, and the current Primary Unit setting with a caret symbol (v) above the printed unit legend of the display.
2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- The caret will automatically move to the choices.
- Available selections include:
-lb - pounds
-kg - kilograms
-oz-ounces
-g - grams
- Press ZERO key to save the selection.

3. When complete, the program will advance to programming AZT.

3.3.4. Programming the Automatic Zero Tracking Band

This option maintains ZERO when small amounts of material are placed on the scale, such as rain, snow, debris, etc.

1. The current AZT setting displays:

- AZt .off - function is not active.
- AZt 0.5 - Half of a division / increment / graduation
- AZt 1 - One division / increment / graduation
- AZt 3 - Three divisions / increments / graduations

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the Motion Band.

3.3.5. Programming the Motion Band

This option defines the range that weight must be stable before the scale can be zeroed and the print function can generate a ticket.

1. The current motion band setting displays:

- bAL .off - function is not active.
- bAL 0.5-Half of a division / increment / graduation
- bAL 1-One division / increment / graduation
- bAL 3-Three divisions / increments / graduations

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the Motion Band.

3.3.6. Programming the Zero Range

This option defines the percentage of scale capacity that can be "zeroed" off by pressing the ZERO Key.

1. The current zero range setting displays:

- O.r 100 - One hundred percent (100\%) zero range
- O.r 2 - Two percent (2\%) zero range
- Disabl - Disables the ZERO key.

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the Division Size.

3.3.7. Programming the Division Size

1. The current division size setting displays:

- $\mathbf{d} \mathbf{X}$, where \mathbf{X} is one of the following:
- 50
- 20
- 10
- 5
- 2
- 1
- 0.5
- 0.2
- 0.1
- 0.05
- 0.02
- 0.01
- 0.005
- 0.002
- 0.001
- 0.0005
- 0.0002
- 0.0001

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the Division Size.

3.3.8. Programming the Filter Setting

This option compensates for the effects of motion, vibration, and wind currents.

1. FiLtEr displays, followed by the current filter setting:

- SLO - Heavy filtering
- Cattle - Very heavy filtering
- Stand - Medium filtering
- FASt - Light filtering

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the Tare setting.

3.3.9. Programming the Tare Setting

This option determines whether or not the instrument will display the product's Net Weight, without the container's weight.

1. tArE displays, followed by the current Tare setting:

- OFF - Tare is disabled.
- ON - Tare is active.
- On-CLr - Tare automatically clears when Gross Weight returns to ZERO.

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the display update rate.

3.3.10. Programming the Display Update Rate

This option sets the allotted time between Display Updates.

1. drAtE displays, followed by the current update rate setting:

- 0.2-200 milliseconds
- 0.4-400 milliseconds
- 0.8-800 milliseconds

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to the Application Menu.

3.4. Application Menu Programming Parameters

1. Press the Internal Program Switch until APP displays.
2. Press UNITS key.

3.4.1. Microvolts Per Division

X.XX uPd displays where $\mathrm{X} . \mathrm{XX}$ is the current microvolts per division for the FB2250.

3.4.2. Programming the 4-20mA Analog Output

WARNING: Do not physically install the $4-20 \mathrm{~mA}$ card until the instrument is configured and calibrated (weight) to the platform.

1. The current $4-20 \mathrm{~mA}$ setting displays:

- 4-20 n - front panel access is disabled while the analog output continues to operate.
- 4-20 Y - front panel access is active while the analog output continues to operate.

2. Press the UNITS key to scroll through available settings. Press ZERO key to select an option.
3. When complete, the program will advance to programming piece count.

* See Section 2 for Front Panel Programming details

3.4.3. Programming the Piece Count Feature

1. The current piece count setting displays:

- PCt \mathbf{n} - feature is disabled (NO)
- PCt Y - feature is active (YES)

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the accumulator.

NOTE: See sections 3.5.11. - 3.5.14. for user operations of this feature.

3.4.4. Programming the Accumulator Feature

1. The current accumulator setting displays:

- ACC $\mathrm{n}-$ feature is disabled (NO)
- ACC Y - feature is active (YES)

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to programming the peak hold.

NOTE: See sections 3.5.8. - 3.5.10. for user operations of this feature.

3.4.5. Programming the Peak Hold Feature

1. P-Hold displays, followed by the current peak hold setting:

- OFF - feature is disabled.
- StAbLE - peak hold when weight is stable
- UnStbL - peak hold even when weight is unstable.

2. Press ZERO key to edit, or UNITS key to skip.

- Press the UNITS key to scroll through available settings.
- Press ZERO key to select an option.

3. When complete, the program will advance to the calibration menu.

NOTE: See section 3.5.16. for user operation of this feature.

3.5. Operating Mode

Operating Mode

This Setting Provides this Operating Mode

NOTE: See Section 3.5. Operating Mode.

3.5.1. Front Panel Key Functions

ON/OFF Turns the Instrument on or off.
UNITS Switches between pre-programmed selectable weight units.
ZERO Sets the display to zero, programmable: 2% or 100% of capacity.
B/G - NET Toggles between Gross and Net weights
(only if a tare value has been entered greater than zero)

TARE automatically tares off displayed weight when key is pressed. Depending on programmed selection, Tare weight will either:
A. Be retained for reuse until changed or power is removed,
or
B. Automatically clear when Gross weight returns to Zero.

PRINT Simple RS232 output when key is pressed.

3.5.2. Operating Procedures

Press the ON / OFF Key for one to two $(1-2)$ seconds. The Instrument will display "888888" followed by a "1234567890" character display moving from right to left, followed by the revision of software. Upon completing the warm-up, the FB2250 will either display zero, or it will display the actual weight on the scale.

The Zero function, Tare function, and AZT require the displayed weight to be stable before these functions will operate. The weight reading is stable if the variation in weight is less than the programmed bAL range.

3.5.3. Instrument Weighing Functions

The industry uses three terms to describe the apportionment of an object's weight. These terms are GROSS WEIGHT, TARE WEIGHT, and NET WEIGHT.

Example: A can of house paint is an object to be weighed.
The empty can is the 'TARE' weight,
the paint is the 'NET' weight, and together they equal the 'GROSS' weight.

$$
\begin{aligned}
& \text { GROSS = NET + TARE } \\
& \text { GROSS - NET = TARE } \\
& \text { GROSS - TARE = NET }
\end{aligned}
$$

3.5.4. Basic Weighing

Ensure platform is empty, turn the scale ON, press the ZERO key and the display indicates " 0 " and is ready for use.

3.5.5. Gross Weighing

Follow these steps for Gross Weighing.

1. Unload the Scale.
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place container/object on scale.
4. Read the Gross Weight on the display.

3.5.6. Net Weighing

Follow these steps for Net Weighing:

1. Unload the Scale.
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place container/object on scale (Tare weight).
4. Press the TARE key.
5. Place material in container or add objects (Net weight).
6. Read the Net Weight on the display. The caret (v) above the printed NET legend of the display will be seen.
7. To Exit; unload the scale and press the TARE key.

3.5.7. Gross/Tare/Net Weighing

1. Unload the Scale.
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place container/object on scale.
4. Press TARE key.
5. Place material in container or add objects.
6. Note the Net Weight on the display. The caret (v) above the printed NET legend of the display will be seen.
7. Press the GROSS/NET key to switch to read the Gross Weight on the display.
8. Press the GROSS/NET key to toggle back and forth between Gross and Net weight.
9. To Exit; unload the scale and press the TARE key.

3.6. Weight Accumulation

Note: For the following operations to function:

- The Accumulator parameter "ACC" must be set to "Y" (See Section 3.7.4: Programming the Accumulator Feature)
- When using PC2250 utility program, Operating Mode must be set to "Accumulation" (See Section 8.6: Configuration).

3.6.1. Weight Accumulation

1. Unload the Scale.
2. Press the ZERO key, if required, to set scale to " 0 ".
3. (optional) If the weighment is going to require a Tare, place the object or container on the scale and press the TARE key.
4. Place material on the scale.
5. When the weight is stable, press the B/G NET key. The display alternates between the number of Accumulations " n " and the total weight Accumulated, either NET or Gross.

- The caret will appear above Total Weight Accumulated. A caret will also appear above NET if a tare was entered.

6. Press the UNITS key to accept the weight, display will momentarily indicate "ACCEPt", and return to the weigh screen.

OR

Press the B/G NET key to skip and return to the weigh screen.
7. The scale must return to " 0 " Gross Mode before another accumulation can occur.
8. Repeat steps 3 through 7 for additional accumulations, up to 99,999 accumulations, or 999,999 totaled weight units.

NOTE: Gross and Net accumulations are stored and reported separately in the 2250 , and the status of each weighment is determined by whether a Tare was initially entered.

3.6.2. Printing Weight Accumulations

10:33AM
12-04-19
11 16 GR
$10: 33 \mathrm{AM}$
12-04-19
12 1b GR

10:33AM
12-04-19
13 1b GR

10:33AM
12-04-17

3. If it is necessary to print a Total Accumulation on the ticket, the following settings can be activated in the ticket format section of the web utility, based on the desired printout:

- CNT GR: The number of Gross accumulations stored in the instrument
- CNT NT: The number of Net accumulations stored in the instrument
- GR Acc: The total accumulated gross weight
- NT Acc: The total accumulated net weight

NOTE: Autoprint is not compatible with printing accumulated totals.
4. If a running total is required with a GNT ticket for each weighment, enable either CNT GR and GR ACC or CNT NT and NT ACC, depending on the type of weighment.
5. After completing Step 6 of the weight accumulation procedure, press the PRINT key before removing objects from the scale. The full GNT ticket will print with the accumulated totals.

6. To print total accumulation only, deactivate the Time, Date, Gross, Tare, and Net fields in the web utility.
7. Press the PRINT key to print accumulated totals after completing the accumulation.

3 Items NT
283 lb NT Total
2

3.6.3. Number of Accumulations

1. Press and hold the ZERO key for three (3) seconds.

- The display will alternate between the number of Gross weight Accumulations " n " and the total Gross weight Accumulated for thirty (30) seconds, then return to the Weigh Mode.
- The caret (v) above the printed Total Weight Accumulated legend of the display will be seen.

2. Press the B/G NET key

- The display will alternate between the number of Net weight Accumulations " n " and the total Net weight Accumulated for thirty (30) seconds, then return to the Weigh Mode.
- The caret (v) above the printed Total Weight Accumulated and NET legends of the display will be seen.

3. Press the B/G NET key to alternate between Gross and Net accumulations or press the UNITS key at any time to exit immediately to the Weigh Mode.

3.6.4. Clearing the Accumulators

- Press and hold the BG/Net key for three (3) seconds.
- Press UNITS key until CLr.ACC displays on the Instrument.

1. Press the ZERO key to edit or UNITS key to skip.

- Press UNITS key to toggle the available settings.
- CIr.YES (Clear the Accumulator)
- CLr.NO (Do NOT Clear the Accumulator)
- Press the ZERO key to enter the selection.

2. When complete, the FB2250 will return to the weight mode.

3.6.5. Piece Counting

NOTE: For the following operation to function:

- The Piece Count parameter "PCt" must be set to "Y" (See Section 3.4.3. Programming the Piece Count Feature), the Accumulator parameter "ACC" must be set to "n" (See Section 3.4.3. Programming the Piece Count Feature) and the Peak Hold parameter "P-Hold" must be set to " n "

1. Unload the Scale.
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place the empty weighing container on the Scale Platform.
4. Press the TARE key.

- This stores the container weight only, placing the scale in the Net Mode.
- " 0 " should display on the instrument and the caret (v) above the printed

NET legend of the display will be seen.
5. Press the B/G NET key.

- The Display prompts to "Add 1" number of sample parts to the container.

6. Pressing the B/G NET key repeatedly will prompt the user to;
"Add 1", "Add 5", "Add 10", "Add 25", Add 50", or "Add 100" sample pieces.
7. Add the required sample pieces to the container, then press the UNITS key.

- The Display will alternate between indicating the net weight and the number of sample pieces.

8. Continue to add the remaining pieces to the container.

- The display will update and continue to alternate between the net

Weight and Number of Pieces, including the original sample.
9. To Exit to the NET Weigh Mode, press the B/G NET key.

3.6.6. Piece Count and Total

NOTE: For the following operation to function:

- The Piece Count parameter "PCt" must be set to "Y" (See Section 3.4.3.), the Accumulator parameter "ACC" must be set to " Y " (See Section 3.4.4.) and the Peak Hold parameter "P-Hold" must be set to "n" (See Section 3.4.5.)

This feature enables the FB2250 to display the Count and Net Weight of the counted items, and to display the Total Count of accumulated items.

1. Unload the Scale.
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place the empty weighing container on the Scale Platform.
4. Press the TARE key.

- This stores the container weight only, placing the scale in the Net Mode.
- " 0 " should display on the instrument and the caret (v) above the printed NET legend of the display will be seen.

5. Press the B/G NET key.

- The Display prompts to "Add 1" number of sample parts to the container.

6. Pressing the B/G NET key repeatedly will prompt the user to;
"Add 1", "Add 5", "Add 10", "Add 25", Add 50", or "Add 100" sample pieces.
7. Add the required sample to the container, then press the UNITS key.

- The Display alternates between indicating the net weight and the number of sample pieces.

8. Continue to add the remaining pieces to the container.

- The display will update and continue to alternate between the net Weight and Number of Pieces, including the original sample.

9. Press the B/G NET key.

- The Display will alternate between the "Total" legend and the total Number of Pieces Accumulated plus the current number of pieces.
- Press the B/G NET key to return to step 6.

10. Press the UNITS key to save the new Total in the accumulator and return to the NET Weigh Mode.

- To continue adding to the Total, repeat steps 1-10.
- To reset the Total see Section 3.5.13. Clearing the Accumulator.

3.6.7. Peak Weight

NOTE: For the following operation to function:

- Peak Hold parameter "P-Hold" must be set to " Y " and the Piece Count parameter "PCt" must be set to " n " and the Accumulator parameter "ACC" must be set to " n "

The Peak Weight feature records the heaviest stable or unstable load placed on the scale, and the time and date it occurred. To display the current Peak Weight, perform the following:

1. Press and hold the ZERO key for three (3) seconds.

- The display will show the time and then alternate between the date and Peak Weight Value, for thirty (30) seconds, then return to the Weigh Mode.

2. Press the UNITS key to end the process and immediately exit to the Weigh Mode.

- To reset the Peak Weight value, see Section 3.5.13. Clearing the Accumulators

3.6.8. Display Total Number of Pieces

Press the Zero key for 3 seconds

Conditional upon programming the operating mode to accumulation, piece count, or piece count and total.

The FB2250 will display total number of pieces, weight, and time out (30 sec).
Conditional upon programming the operating mode to peak hold stable or peak hold unstable.

The FB2250 will display time, date, peak weight, and time out (30 seconds).

SECTION 4: ACCESSORIES

4.1. Attaching an external power supply

4.1.1. Requirements

WARNING: Do not physically install the $4-20 \mathrm{~mA}$ card until the instrument is configured and calibrated (weight) to the platform.

If the device is passive, an auxiliary power supply must be used to supply the voltage for the current loop. Wire it as shown.

FB2250 Condition	$4-20 \mathrm{~mA}$ analog output
Weight behind zero	3.5 mA
Weight below 4.20 LO	3.5 mA
Weight at 4.20 LO	4.0 mA
Weight at 4.20 HI	20.0 mA
Weight above 4.20 HI	24 mA
Program Mode	Locked on last $4-20 \mathrm{~mA}$

- It is recommended to disable the Sleep Mode when the $4-20 \mathrm{~mA}$ analog is used.
- Loop Power should be turned off whenever the FB2250 is turned off.

4.1.2. Programming the Weigh Mode that the Output Tracks

Note: Access to this feature is conditional and depends upon whether it is enabled in the FB2250 Internal Programming.

1. Press and hold the UNITS key for three (3) seconds.
2. The display will show $4-20$, followed by the current setting.
a. Gross
b. Net
3. (A) To keep the current setting, press the UNITS key.
(B) To change the setting:
a. Press the ZERO key
b. Then use the UNITS key to toggle the available settings
c. Press the ZERO key to select the desired option.

NOTE: The 4-20mA Analog Output will continue to track the selection regardless of the currently selected Weigh Mode.
4. When complete, the program will advance to the 4 mA menu.

4.1.3. Programming the $4 m A$ Weight Value

1. 4.20 Lo displays, followed by the current setting.
2. Press the ZERO key to edit or press the UNITS key to skip.
a. The most significant digit will be blinking, operate the UNITS key to increment the number.
b. When the desired value has been obtained, Press the ZERO key.
c. The next less significant digit will then blink, operate the UNITS key to increment the number.
d. Repeat steps b and c until the least significant digit has been completed. This weight value will result in a 4mA Output.
3. When complete, the program will advance to the 20 mA menu.

4.1.4. Programming the 20 mA Weight Value

1. 4.20 Hi displays, followed by the current setting.
2. Press the ZERO key to edit or press the UNITS key to skip.
a. The most significant digit will be blinking, operate the UNITS key to increment the number.
b. When the desired value has been obtained, Press the ZERO key.
c. The next less significant digit will then blink, operate the UNITS key to increment the number.
d. Repeat steps b and c until the least significant digit has been completed. This weight value will result in a 20 mA Output
3. When complete, the FB2250 will return to weigh mode.

4.2. Fieldhus

Fairbanks Scales offers five different fieldbus devices modules; PROFIBUS®-DP, ControlNet®, DeviceNet ${ }^{\text {TM }}$, Modbus $®$, and ETHERNET/IP.

The fieldbus card is factory installed onto an adapter.

4.2.1. ETHERNET/IP Addressing

The ETHERNET/IP module uses Dynamic addressing using DHCP for address requests as the default. The data is transmitted continuously from this module. The IP address may be made static by downloading the IP Configuration Tool software from:
https://www.anybus.com/support/file-doc-downloads/anybus-compactcom-30series

With this utility, it is possible to change the IP, Sub Net and Gateway addresses of an ETHERNET/IP Module. To change an address, double click on the IP address field and enter the changes.

ETHERNET/IP can be easily confused as a simple combination of EtherNet and the Internet Protocol. Instead, it is an Industrial Application Layer Protocol used for communication between industrial control systems and their components.

- Such components include Programmable Automation Controller, Logic Controller, or an I/O System.
The "IP" in ETHERNET/IP is not an abbreviation for "Internet Protocol", but instead, it stands for "Industrial Protocol".

4.3. Fieldhus Connections

PROFIBUS® DP

Pin Signal Description

3 B Line Positive RxD/TxD, RS485 level

4 RTS
5 GND
6 +5 Bus Output
8 A Line

Request to Send
Ground (Isolated)
+5 V termination power (Isolated, short circuit protected) Negative RxD/TxD, RS485 level

DeviceNet ${ }^{\text {TM }}$
Pin Signal Description

1	V-	Negative bus supply voltage
2	CAN_L	CAN low bus line
3	SHIELD	Cable shield
4	CAN_H	CAN high bus line
5	V+	Positive bus supply voltage

Modbus®
Pin Signal Description

1 GND Bus polarization, ground (isolated)
$25 \mathrm{~V} \quad$ Bus polarizatino power +5 V DC (isolated
3 PMC Connect to pin \#2 for RS-232 operation
5 B-LINE RS-485 B-Line
7 RX RS-232 Data Receive
8 TX RS-232 Data Transmit
9 A-Line RS-485 A-Line

ETHERNET/ IP

Use standard Cat 5 cable (RJ45)

Output data can be verified using the PC2250 utility.

4.3. Fieldhus Connections, continued

ControlNet

Uses a BNC connector cable.

Additional information available at:
https://www.anybus.com/support/file-doc-downloads/anybus-compactcom-30-series

4.4. PROFIBUS®-DP Diagnostic LEDs:

1: Operation Mode LED

2: Module Status LED

Operation Mode LED

State	Description	Comments
Off	Not online / No power	-
Green	Online / Data exchange	-
Flashing Green	Online, clear	-
Flashing Red (1 flash)	Parameterization error	See Parameterization data handling
Flashing Red (2 flashes)	PROFIBUS configuration error	See Configuration data handling

Module Status LED

State	Description	Comments
Off	No power or not initialized	Module state="SETUP" or NW_INIT"
Green	Initialized	Module has left the NW_INIT state
Flashing Green	Initialized, diagnostic event(s) present	Extended diagnostic bit is set
Red	Exception error	Module state = EXCEPTION

4.5. DeviceNet ${ }^{\text {TM }}$ Diagnostic LEDs:

1:Network Status LED
2: Module Status LED
3: DeviceNet ${ }^{\text {TM }}$ connector

Network Status LED

State Description

Off Not online / No power
Green
Flashing Green (1 Hz)
Red
Flashing Red (1 Hz)
Alternating Red/Green
Online, one or more connections established
Online, no connections established
Critical link failure
One or more connections timed out
Self-test

Module Status LED

State

Off
Green
Red
Flashing Red (1 Hz)
Alternating Red/Green

Flashing Green (1 Hz) Missing/incomplete configuration / Device needs commissioning
Description
No power
Operating in normal condition Unrecoverable fault(s)
Recoverable fault(s)
Self-test

4.6. Modhus® Diagnostic LEDS:

1: Communication LED
2: Device Status LED
3: Modbus® Interface

Communication LED

State	Description
Off	No power - OR - no traffic
Yellow	Frame reception or transmission
Red	A fatal error has occurred

Device Status LED

State	Description
Off	Initializine - OR - no power
Green	Module initialized, no error
Red	Internal error -OR-major unrecoverable fault
Red, Single flash	Communication fault or configuration error Case 1: Invalid settings in Network Configuration error Case 2: Settings in Network Configuration Object has been changed during runtime (i.e. the settings do not match the currently used configuration)
	Application diagnostics available

4.7. ETHERNET / IP Diagnostic LEDs:

1: Network Status LED
2: Module Status LED
3: Link/Activity
4: Ethernet Interface (RJ 45) (Standard Cat 5 cable)

Network Status LED

State Description

Off
Green
Flashing Green
Red
Flashing Red

Not online / No power
Online, one or more connections established
Online, no connections established
Duplicate IP address, FATAL error
One or more connections timed out

Module Status LED

State Description

Off	No power
Green	Controlled by a scanner in Run state
Flashing Green	Not configures, or Scanner in idle state
Red	Major fault (EXCEPTION-state, FATAL error, etc.)
Flashing Red	Recoverable fault(s)

LINK / Activity LED

State

Description
Off
Green
Green, flickering

No link, no activity
Link established Activity

4.8. ControlNet

No.	DESCRIPTION
1	Network Status LED A
2	Module Status LED
3	Network Status LED B
4	ControlNet Connector A
5	ControlNet Connector B

Network Status LEDS

LEDS	State	Description
A and B	Off	Not online / No power
	Flashing Red (1 Hz)	Incorrect node configuration, duplicate MAC ID etc.
	Alternating Red/Green	Self test of bus controller
	Red	Fatal event or faulty unit
A or B	Off	Channel is disabled
	Alternating Red/Green	Invalid link configuration
	Flashing Green (1 Hz)	Temporary errors (node self-corrects) or node is not configured to go online.
	Green	Normal operation
	Flashing Red (1 Hz)	Media fault or no other nodes on the Network

Module Status LED

State Description

Off	No power
Green	Operating in normal condition, controlled by a Scanner in RUN state.
Flashing Green(1Hz)	The module has not been configured or the Scanner is in the Idle state.
Red	Unrecovrerable fault(s), EXCEPTION,
Flashing Red $(1 \mathrm{~Hz})$	Media fault or no other nodes on the Network

SECTION 5: SERIAL COMMUNICATION WIRING

5.1. JP3 Jumper Configuration:

JP3	
	$\square \square$
3	$\square \square 4$
	$\square \square 6$
7	$\square \square 8$
	$\square \square 10$
11	$\square \square 12$
$\square \square$	

JP3

RS232
RS485

out	120Ω resistor
out	in
out	120Ω resistor

RS422* Port

120Ω resistor	Com1
out	Com1
out	Com1
out	Com2
out	Com2
120Ω resistor	Com2

120Ω resistor $\operatorname{Com} 2$

120 ohm termination resistors required if the receiver is the last node of the network

5.2. TB4 Connections, COM1 [A], COM2 [B], and COM2 [C]

TB4 (A)	RS232		RS485	RS422*	PORT
1	Rx-Receive Data		(-) RS485	RS422 (-) Rx	COM1
2	Tx - Transmit Data		(-) RS485	RS422 (-) Tx	COM1
3	CTS - Clear-to-Send		(+) RS485	RS422 (+) RX	COM1
4	GND -- Ground		GND	GND	COM1
5	RTS - Ready-to-Send		(+) RS485	RS422 (+) Tx	COM1
TB4 (B)	RS232	DB9 ABS ONLY	RS485	RS422*	PORT
1	Rx-Receive Data	2	(-) RS485	RS422 (-) Rx	COM2
2	TX - Transmit Data	3	(-) RS485	RS422 (-) Tx	COM2
3	CTS - Clear-to-Send	8	(+) RS485	RS422 (+) Rx	COM2
4	GND - Ground	5	GND	GND	Сом2
5	RTS - Ready-to-Send	7	RS485	RS422 (+) Tx	COM2
TB4 (C)	20MA		RS485	RS422	PORT
1	(+) TX - Transmit Passive, 20mA Output				COM2
2	(-) TX Passive, 20mA Output				COM2
3	${ }^{(+)} 7.5 \mathrm{~V}$ Bluetooth ${ }^{\circledR}$ Technology Supply				

*Port should be set to RS485.

SECTION G: PRINTER INSTALLATION

6.1. 3550 Tape Printer

Transmission	RS232
Baud Rate	$\mathbf{9 6 0 0}$
Data Bits	$\mathbf{8}$
Stop Bit	$\mathbf{1}$
OUTPUT	"BUTTON" for Print Key

DS1	ON	OFF
1		X
2	X	
3	X	
4	X	
5		X
6		X
7		X
8	X	
9		X
10		X

6.2. TM-U220 Tape Printer

This is the TM-U220 Tape Printer (non-DAT, white case).

Transmission	RS232
Baud Rate	$\mathbf{9 6 0 0}$
Data Bits	$\mathbf{8}$
Stop Bit	$\mathbf{1}$
OUTPUT	"BUTTON" for Print Key

6.3. Okidata 186 T Form Printer

The FB2250 should be programmed for RS-232, 9600 baud, 8 data bits, and 1 stop bit. The OUTPUT setting should be "BUTTON" for the Print key.

To change Menu Settings:

1. To enter MENU MODE, press and hold SELECT while turning on the printer. The " 12 " and "UTILITY" LEDs will blink.
2. With the printer in the Menu Mode, press SELECT to print the complete menu. The current default settings print out. It is recommended to use tractor fed paper. NOTE: The printed menu selections are different for each emulation mode.
3. Press LINE FEED to select the relevant group that needs to be changed (the group is the left-hand column on the Menu printout).
4. Press FORM FEED to select the relevant item within the selected group (the Item is the center column on the Menu printout).
5. Press TOF SET to cycle through the settings available for the item you want to change (the settings are the right-hand column on the Menu printout).
6. To continue making changes: press LINE FEED for the next group or press FORM FEED for the next item. Repeat as needed until you are finished changing settings.
7. Press PITCH and MODE together to save the changes and exit the Menu Mode.

NOTES:

Exiting the Menu Mode by turning off the printer will cancel any changed settings.
Printed menu changes per Printer Emulation Mode. If printer emulation mode is NOT set to ML, set this first, then reprint the menu. Then set menu as follows:

6.3. Okidata 186 T Form Printer, Continued

(GROUP) (press LINE FEED to change)	(ITEM) (press FORM FEED to change)	(SET) (press TOF SET to change)
Printer Control	Emulation Mode	ML
Font	Print Mode	Utility
Font	DRAFT Mode	SSD
Font	Pitch	10 CPI
Font	Proportional Spacing	No
Font	Style	Normal
Font	Size	Single
Symbol Sets	Character Set	Standard
Symbol Sets	Language Set	American
Symbol Sets	Zero Character	Slashed
Symbol Sets	Code Page	USA
Vertical Control	Line Spacing	6 LPI
Vertical Control	Skip Over Perforation	No
Vertical Control	Page Length	11"
Set-Up	Graphics	Bi-directional
Set-Up	7 or 8 Bits Graphics	7
Set-Up	Receive Buffer Size	128K
Set-Up	Paper Out Override	No
Set-Up	Paper Registration	0
Set-Up	7 or 8 Bits Data Word	8
Set-Up	Operator Panel Function	Full Operation
Set-Up	Reset Inhibit	No
Set-Up	Print Suppress Effective	Yes
Set-Up	Auto LF	No
Set-Up	Print DEL Code	Yes
Set-Up	Time Out Print	Invalid
Set-Up	Auto Select	No
Set-Up	Impact Mode	Normal
Parallel I/F	I-Prime	Buffer Print
Parallel I/F	Pin 18	+5v
Parallel I/F	Bi-Direction	Enable

6.3. Okidata 186 T Form Printer, Continued

Serial PCB Assy Switch Settings: (SW1) (** indicates typical Fairbanks setting)

Parity Type	Switch 1 (SW1)
** Odd parity	ON
Even parity	OFF
Parity	Switch 2 (SW1)
** No parity	ON
With parity	OFF
Data Bits	Switch 3 (SW1)
** 8 Bits	ON
7 Bits	OFF
Protocol	Switch 4 (SW1)
Ready/Busy	ON
** X-ON, X-OFF	OFF
Test Select	Switch 5 (SW1)
** Circuit	ON
Monitor	OFF
Mode Select	Switch 6(SW1)
** Print mode	ON
Test mode	OFF
Busy Line Selection	Switch 7, 8 (SW1)
SSD- Pin 11	OFF, ON
SSD+ Pin 11	OFF, OFF
** DTR- Pin 20	ON, ON
RTS- Pin 4	ON, OFF

(SW2) (** indicates typical Fairbanks setting)

6.3. Okidata 186 T Form Printer, Continued

Transmission Speed	Switches 1, 2, 3 (SW2)
19,200 bps	ON, ON, ON
$* * 9,600 \mathrm{bps}$	OFF, ON, ON
$4,800 \mathrm{bps}$	ON, OFF, ON
$2,400 \mathrm{bps}$	OFF, OFF, ON
$1,200 \mathrm{bps}$	ON, ON, OFF
600 bps	OFF, ON, OFF
300 bps	ON, OFF, OFF
110 bps	OFF, OFF, OFF
DSR Input Signal	Switch 4 (SW2)
Active	ON
$* *$ Inactive	OFF
Buffer Threshold	Switch 5 (SW2)
32 bytes	ON
$* * 256$ bytes	OFF
Busy Signal Timing	Switch 6 (SW2)
$* * 200$ ms minimum	ON
1 second minimum	OFF
DTR Signal	
$* *$ Space after power on	Switch 7 (SW2)
Space when printer is selected	ON
Not Used	OFF
$* *$	Switch 8 (SW2)

2250-TB-4

 DB-25

6.4. Okidata 420 Form Printer

The FB2250 should be programmed for RS 232, 9600 baud, 8 data bits, and 1 stop bit. The OUTPUT setting should be "BUTTON" for the Print key.

To change Menu Settings:

SEL						
SEL		LF	FF/LOAD	TEAR	PARK	QUIET
MENU	SHIFT	Micro Feed Down	Micro Feed Up			TOF
EXIT		GROUP	ITEM	SET	PRINT	
POWER	ALARM	MENU				

1. To enter MENU MODE, press and hold the SHIFT key while pressing the SELECT key. The "MENU" legend will be illuminated while in the menu mode.
2. With the printer in the Menu Mode, press PRINT to print the complete menu. The current default settings print out. It is recommended to use tractor fed paper. NOTE: The printed menu selections are different for each emulation mode.
3. Press GROUP to select the relevant group that needs to be changed (the group is the left-hand column on the Menu printout).
4. Press ITEM to select the relevant item within the selected group (the Item is the center column on the Menu printout).
5. Press SET to cycle through the settings available for the item you want to change (the settings are the right-hand column on the Menu printout).
6. Press and hold the SHIFT key while pressing the SELECT.key exit the Menu Mode.

Note: If you turn off the printer before exiting the menu mode, any changes will be lost.

6.4. Okidata 420 Form Printer, Continued

(GROUP)
 (press LINE FEED
 to change)

(ITEM)
(press FORM FEED to change)

Printer Control
Emulation Mode
IBM PPR

Font
Font
Font
Font
Font
Font

Symbol Sets
Symbol Sets
Symbol Sets
Symbol Sets

Rear Feed
Rear Feed
Rear Feed
Rear Feed

Bottom Feed
Bottom Feed
Bottom Feed
Bottom Feed
Line Spacing
6 LPI
Form Tear-off
Off
Skip Over Perforation
Page Length
No

Top Feed
Top Feed
Top Feed
Top Feed

Form Tear-off Off
Line Spacing
Form Tear-off
Skip Over Perforation
Page Length
No
Page Length
11"
Print Mode
DRAFT Mode
Pitch
Proportional Spacing
Style
Size

Character Set
Language Set
Zero Character
Code Page

6 LPI
Set 1
American
Slashed
USA
Utility
HSD
10 CPI
No
Normal
Single

6.4. Okidata 420 Form Printer, Continued

Set-Up

Parallel I/F
Parallel I/F
Parallel I/F

Serial I/F

Serial I/F
Serial I/F
Serial I/F
Serial I/F
Serial I/F
Serial I/F
Serial I/F
Serial I/F

Graphics
Receive Buffer Size
Paper Out Override
Print Registration
Operator Panel Function
Reset Inhibit
Print Suppress Effective
Auto LF
Auto Select
SI Select Pitch (10CP)
SI Select Pitch (12CPI)
Time Out Print
Auto Select
Centering Position
ESC SI Pitch
Power Saving
Power Save Time

I-Prime
Pin 18
Bi-Direction

Parity

Serial Data 7/8 Bits
Protocol
Diagnostic Test
Busy Line
Baud Rate
DSR Signal
DTR Signal
Busy Time

Uni-directional 64K
No
0
Full Operation
No
Yes
No
No
17.1 CPI

12 CPI
valid
No
DEFAULT
17.1 CPI

Enable
5 Min

Buffer Print
$+5 \mathrm{v}$
Enable

None
8 Bits
X-On/X-Off
No
SSD-
9600 BPS
Invalid
Ready on Pwr up
200 ms

6.5. TM-U295 Ticket Printer

The FB2250 should be programmed for RS232, 9600 baud, 8 data bits, and 1 stop bit. The OUTPUT setting should be "BUTTON" for the Print key.

Set the printer's dip switches per the following:
1 and 3 on, the rest off.
Cycle power to the printer after making switch changes.

6.6. TM-U590 Ticket Printer

The FB2250 should be programmed for RS232, 9600 baud, 8 data bits, and 1 stop bit. The OUTPUT setting should be "BUTTON" for the Print key.

Set the printer's dip switches per the following:
DSW 1: 1,3 , and 7 on only.
DSW 2: All off.
Cycle power to the printer after making switch changes.

2250-TB-4
DB-25

6.1. 1600 Series Remote Display

 20903 \downarrow

Using the 20mA Serial Current Loop Output will allow transmission distances up to 1000 cable feet.

- Interface Cable (20903) is recommended.

	Port 2
Protocol	C-Loop
Baud Rate	$\mathbf{9 6 0 0}$
Data Bits	$\mathbf{8}$
Parity	None
Stop Bit	$\mathbf{1}$
Output Type	rDisp

The 1600 Series remote display must be wired for 20 mA Active and programmed to match the FB2250.

- Wiring to the FB2250: TB4 (C) to the Remote Display (see section 2.7 or 5.4).

1	Tx + Passive 20mA Output
2	Tx - Passive 20mA Output

Wire the 1600/1500 Series Remote Display to the FB2250 as shown in this diagram.

6.8. FB2250 Remote Display

	FB2250 (Master)	FB2250 (Remote)
Port	1 or 2	1
Protocol	RS232	RS232
Baud Rate	9600	9600
Data Bits	8	8
Parity	none	none
Stop Bit	1	1
Output Type	POLL	Rd2250

- See Sections starting at 3.2.3. Port 1 configuration programming.
- See Sections starting at 3.2.9. Port 2 configuration programming.
- See Appendix III for wiring information.
- See Appendix IV for Remote Display Active Keys information.

Note: Remote Display will blank when connection to Master is terminated.

SECTION 7: PC2250 UTILITY SOFTWARE

7.1. Introduction

The PC2250 utility software program can be used to set up and configure the FB2250. It is required in order to program certain features such as custom units and custom ticket vector programming. The F2250 uses port 2 to communicate to the computer.

1.2. Wiring

Computer DB9 Pin 3 (TX) ------------------------ FB2250 TB4 Pin 6 (RX)
Computer DB9 Pin 2 (RX) FB2250 TB4 Pin 7 (TX)
Computer DB9 Pin 5 (GND) FB2250 TB4 Pin 9 (GND)

7.3. Communication Settings

1. Configure the FB2250 Port 2 as noted in Table 1 below:
a. Press and hold the Internal Program Switch until SetUP displays. (see section 3.2)
b. Use the UNITS key to scroll through each menu item until Port 2 displays
c. See Sections 3.5.9-3.5.14 for configuration instructions.
d. Exit to weigh mode.

Baud Rate	9600
Data Bits	$\mathbf{8}$
Parity	Nobe
Stop Bit	$\mathbf{1}$
Mode	Continuous

2. On the PC Launch the PC2250.exe file.

- An image of the FB2250 will display on the computer monitor.

3. Access the COM Port Settings of the computer by pressing F2.
4. Configure the Com Port connected to the FB2250 via the pop-up menu to match the settings in Table 1 above.
5. Close the pop-up menu when complete.
6. To the left side of the weight display, the legend "CONNECTED" with a rotating baton will be displayed.

- The weight display will duplicate what is shown on the FB2250.

7. Left-clicking the mouse on any key will transmit that command to the FB2250.

- This excludes the PRINT key.
- The legend "COMMAND SENT!" will display at the right.
- Mouse-clicking the ON/OFF key will terminate the PC2250 software program.

Files

The default folder for all saved/uploaded parameter files is PC2250\SAVED

1.4. Menu Bar

The PC2250 menu bar is located at the bottom of the display.

5 New	Fopen	㖪Save	?\{iSave As	萄 $\underline{y s}^{\text {pload }}$	B Download	Exit

NEW: Loads the Parameters Menu with FB2250 default settings.
OPEN: Opens the SAVED folder to select a file.
SAVE: \quad Saves the currently named file.
SAVE AS: Saves the current file and prompts for a file name.
UPLOAD: Uploads the current FB2250 settings to the PC2250.

The FB2250 will display "PC". Press the Program switch inside the FB2250.

Initializing FB2250 Upload... please wait.
FB2250 Acknowledgment Received! Beginning upload... Uploading Settings... Upload Complete!

When complete, click the "OK" button.

DOWNLOAD: Downloads the current PC2250 settings to the FB2250.

Initializing FB2250 Download... please wait.

Cancel

The FB2250 will display "PC". Press the Program switch inside the FB2250.

Initializing FB2250 Download... please wait. \}
FB2250 Acknowledgment Received!
Preparing download string... Beginning download..
FB2250 Ready Response Received!
Downloading Settings...
FB2250 Acknowledgment Received! Download complete!

When complete, click the "OK" button.

EXIT: Closes the Parameter Editor.
Press or Click F4 to enter the Parameters Editor.

1.5. Configuration

Programming features is accomplished by using the mouse and:

- Clicking the data item to highlight it, and then typing the replacement data.
- Clicking the drop down arrow and selecting an available item.
- Clicking to provide a checkmark, which indicates the selection is active.
- The custom unit factor is a conversion factor of the current primary weight data.

Custom Unit Programming example:
To convert lbs to dry barrels enter the conversion factor, resolution and custom legend, in the PC2250 program. The current primary weight will be multiplied by the conversion factor, rounded off to the custom resolution and printed with a custom legend.

7.6. Calibration

\pm Parameters Editor							
Configuration	Calib_ation	AnyBus / $\mathbf{4}-20 \mathrm{~mA} \mid$ C	Custom Output	Eormat Tick			
		Scale Capacity Primary Units Auto Zero Trac Motion Band Division Size Digital Filter Auto Tare	1000 1 b king 3 3 1.0 Fast ON				
W ${ }^{\text {N }}$ w	O- Open	䜿鸟ave	? STSave As		E Download	[-Exit	

Settings include:

- Scale capacity
- Primary Units
- Auto Zero Tracking
- Motion Band (BAL)
- Division Size
- Digital Filter
- Auto Tare settings.

Actual test weight calibration is performed with the FB2250 front panel keys.

7.1. First time Connection Using PC225K PC Utility and FB225K ETHERNET TCP/IP option

1. With the FB225X connected to the ethernet network, launch the PC225X PC Utility from the PC on the same network as the FB225X.
2. Change the interface from RS232 to TCP/IP by clicking on the button.
3. Select the PC Utility type based on the instrument you will be connecting to. Choose PC2250 or PC2255.

NOTE: If the ethernet card has been previously configured, skip to step 23.

4. Click F4 to open the Configuration window.
5. Select the IP CONNECTION Tab.

6. Click the TCP CONFIGURATION UTILITY button.

TCP Configuration Utility
7. The NETEON Utility will open.

. 4				monitor ver2.6							- ■		\times	
Broadcast IP														
255.255.255.255 ${ }^{\text {2 }}$ (Wish														
Reply				Invite	Reset	Config		Browser	Exit					
255.255.255.255		Retry	0											
IP Address	MAC Address		Host Name		teway		Subnet Mask		Model	Kernel	AP version			
$=10.10 .50 .100$	00:60:E9:13:8F:7B		name	10. 0. 0.254			255		255. 0. 0	GW212	2.70	TerminalSrv v3.600MU	S	

8. The default IP (10.10.50.100 or 10.0 .50 .100) of the ethernet device should show.
9. Highlight the IP address shown by clicking on it.
10. Select the CONFIG button. A new dialog box will open.

11. Click the BROWSER button. Browser
12. You will be prompted for the USER ID and PASSWORD previously entered.
13. The OVERVIEW window will open showing the current addresses and settings for the ethernet card.
14. If additional network configuration is required, click the NETWORKING link.
15. To change the PASSWORD, click the SECURITY link.
16. Do NOT make any changes under the COM1 link.

17. Close the browser window when you are done.
18. Click the EXIT button to close the configuration utility.

23. Return to the PC225X Utility and select the IP CONNECTION tab.

24. If the SELECT button is available, proceed to the next step, if it is not click on the EDIT button then proceed to the next step.
25. In the CONFIGURATION field, enter a human readable name to identify the FB225X instrument to connect to.

26. In the HOST ADDRESS field, enter the IP address for the FB225X being connected.
27. Default PORT NUMBER is 4660.
28. Once complete, select UPDATE GRID.

	Parameters... (C:\Program Files (x86)\Fairbanks Scales\PC225X PC Utility\SAVED\Test 3.dat)							\times			
Configuration \| Calibration	FieldBus / 4 -20mA	Custom Output	Erermat Ticket IP Connection								
Configuration Selection: Click on desired row(any cell with white background) to select configuration.											
				\wedge		Update Grid					
1	FB2255 ABS	206.220.166.249	4660		Edit Configuration:						
2					Configuration:	FB2255 ABS					
3					Host Address:	206.220.166.249					
4											
5					Port Number:	4660					

29. Save the PC225X Configuration file using the SAVE AS button.
30. Press EXIT to close the Configuration tool.
31. Weight should now display on the PC225X Utility.
32. The Utility will display the current IP Connect selected next to the TCP/IP button.
33. You can make Configuration changes, Upload and Download files from the PC225X Utility and the
 FB225X instrument.

7.8. Fieldhus

The Anybus Module is set up using the PC2250 Program and configures the following parameters listed below. The FB2250 will automatically detect the Anybus module installed. No additional programming is required except the following parameters if necessary. The remainder of the fieldbus configuration and programming is performed on the fieldbus network side by the customer's network personnel.

PORT 20

As part of the ETHERNET IP specification, the fieldbus device uses Port 20. This port cannot be changed. This is to ensure other devices on the network are able to communicate with each other.

Node Address

Enter the Node Address of the Module. This is typically furnished by the customer.

Baud Rate

Most anybus modules can automatically detect the network speed by using the Auto Baud feature. DeviceNet uses 125 bps, 250bps or 500bps.

Data Type

Data can be setup to output a 32 bit Integer word or a 32 bit floating point value.

Endian

The endianess of module is determined by the network type but can be changed from Little Endian to Big Endian or vice versa by using the "Change Order" setting

Little Endian Format or Intel Order

In little endian format, the least significant byte is stored first, followed by the next three more significant bytes. For example a 32 bit value of 0×12345678 would be stored in Memory in Little Endian as;

```
Address + 0 0x78
Address + 1 0x56
Address + 2 0x34
Address + 3 0x12
```


Big Endian Format or Motorola Order

In big endian format, the most significant byte is stored first, followed by the next three least significant bytes. For example a 32bit value of 0×12345678 would be stored in Memory in Big Endian as;

Address + 0 0x12
Address + $1 \quad 0 \times 34$
Address + 20×56
Address + 3 0x78

OUTPUT

Data from the FB2250 comprises of three (3) 32bit words; Gross Weight, Tare Weight and a 32bit Status word
Gross and Tare weights can be selected as either a 32bit Integer or 32bit floating point word.

The Most significant byte indicates the Weigh Mode "G" for Gross and "N" for Net. The next order byte indicates; "O" Overcapacity, "M" Motion of the last command received. (See INPUT Commands)

The next order byte indicates the weight units; "l" pounds, "k" kilograms, "o" ounces and "g" grams.

The least significant byte indicates the number of decimal places if the weight output is selected to be a 32bit Integer word. If a Floating point word is selected this byte will be 0 .

INPUT

Single byte Commands can be sent from the network. Although the input is read as a 32 bit word only the least significant byte is used at this time. When the command is sent and recognized it is entered into the 32 bit status byte in the least significant command byte location. New commands can be transmitted after transmitting a NULL command.

Recognized Commands

Print Stream (see Custom Format PC2250)
Print Format Stream; CR, SPACE, STX, ENQ or defined Poll Character
Tare: "A"
Print Ticket "p" / "P"
Zero "Z"
Change Gross Net Weigh Mode: "G"
Change Units: "U"

Debug

- Data in the Anybus Module can be examined by clicking the START DEBUG button.
- It is stopped by clicking the STOP DEBUG button.
- The Start Debug and Stop Debug provides a verification of the FB2250 communicating with the fieldbus module by sending hexadecimal values which may be observed upon pressing start and stop debug.
- The WRITE BUFFER contains three 32 -bit words.
- Gross Weight, Tare Weight and the Status Word is the data sent to the Network.
- The Contents of the READ BUFFER, which is the data received from the network, is displayed as a 32-bit word.

7.9. 4-20mA

A point-to-point or multi-drop circuit mainly used in the process automation field to transmit signals from instruments in the field to a controller. It sends an analog signal from 4 to 20 mA that represents 0 to 100\% of the weight displayed at the instrument. As a current loop signal, the FB2250's 4-20ma output is a passive device which requires an isolated and dedicated power supply provided by others.

Enable 4-20mA - From the drop-down menu, select YES to enable the output.
Low Weight - Enter the weight value which represents the 4 mA output signal.
High Weight - Enter the weight value which represents the 20 mA output signal.
Mode - From the drop-down menu, select weight mode which the $4-20 \mathrm{~mA}$ will track, Gross or Net.

WARNING: Do not physically install the $4-20 \mathrm{~mA}$ card until the instrument is configured and calibrated (weight) to the platform.

7.10.Gustom Output: Settings

Checksum:

This setting determines whether a checksum character is enabled or not enabled.
Checksum is an error detection method that checks the integrity of the entire string of data that is transmitted.

Delimited: This setting determines if a comma is added to the output string to separate data fields contained within the output string.

Hardware handshaking: No function. For future use.

7.11. Gustom Output: Load

A variety of pre-packaged output strings is available, click the radio button to select.

Upon selection, confirm or cancel. Refer to Appendix for data output structures.
NOTE: PLC is no longer used and not a valid selection.

NOTE for Rev 1.0 to 1.9: When custom outputs are formatted for Port 1, the FB2250 Port 1 output must be set to "print F".

IMPORTANT NOTE: Whenever custom outputs are programmed for Port 2, upon completion the power MUST be cycled to the FB2250 Instrument in order for them to take effect.

7．12．Custom Output：Build

The data output string can be customized to suit the application requirements．

The current structure of the output string is displayed at the bottom，in order of transmission from left to right．

Parameters Editor								G
Configuration	Calibration｜｜	AnyBu	$\underline{-20 \mathrm{~mA}} \underline{\underline{C}}$	Custom Output	Format Ticket			
Com1 Print Mode $=$ Continuous								
Settings	Load	Build	Tokens	s Weights				
Item Data Ty	Data Type		Value					\wedge
1 Status	Status Code A		＜A＞					
2 Status	Status Code B		＜B＞					
Status Code C			＜C＞					
Gross Weight			＜G＞					
Tare Weight			＜T＞					
Date			＜d＞					
7								
8								
9								
10								
11								
12								
13								
14								
15								
士								
＜A＞＜B＞＜C＞＜G \ll $>$ \lld $>$								
W New	Fopen	區		？\｛\Save As	罊Upload	B D ${ }^{\text {Download }}$	Exit	

Changing data items is accomplished by right clicking the mouse in the selected＂DATA TYPE＂field．

This will open a selection window containing many different data items．
\＃Parameters Editor

－回回	Configuration	Caliblation	AnyBus $/ \mathbf{4}-20 \mathrm{~mA}$
Custom Output	Format Ticket		

Com1 Print Mode $=$ Continuous

7.13. Gustom Output: Tokens

A wide variety of different characters can be selected for the polling character, as well as the start, stop, block, primary and secondary units, weighing mode, motion, and capacity characters.

For selection of a character not listed, select "USER DEFINED"

This will produce an additional data entry box as shown.

Selecting data items is accomplished by right clicking the mouse in the additional data entry box.

For selection of a character not listed, select "Entry".

Poll	User Defined	
Start	STX	

- $0^{\text {Open }}$		P2 S Save As	鷘Upload	
A Selection of Entry allows the user to enter a character using the keyboard, such as an ' A ' or a ' 1 '				

7.14. Custom Output: Weights

A variety of different settings is also available for the number of weight digits, whether leading zeroes are included or not, left or right justification, decimal point inclusion and type, decimal places, and positive and negative polarity designators.

7.15.Format tickets

- Formatting tickets is easily performed with this drag and drop interface.
- The blue-dashes indicate the printable area of the ticket based on the ticket size and margins entered (by the user or by default).

1. Click on the drop down arrow to select the desired ticket Printer.
2. Click on the drop down arrow for INHIBIT to select either NONE, HIGH, or LOW.
3. Enter the Ticket Size and Margins in inches.
4. Items can be removed or added from view and printing by right clicking the VISIBLE box under the parameter, and then selecting NO or YES.
a. Count1 options include:
i. NO - not visible
ii. PIECE - number of pieces
iii. CNT GR. - Gross accumulated count
b. Count2 options include:

i. NO - not visible
ii. PIECE - Total accumulated number of pieces
iii. CNT NT - NET accumulated count
5. Click-and-hold on a data item in the ticket window to move it to a different location or manually change the numeric values for TOP and LEFT.

NOTES:

- Although the Lines/ inch and Char Width settings are sent to the printer and stored, they are not being used at this time (possible future use).
- Legends such as GROSS cannot be disabled and are always included.

7.16. Printed Examples:

ACCUMULATION

Field		Count1	Count2	Peak Wt	GR Acc
NT Acc					
Visible		CNT GR	CNT NT	NO	YES
YES					
Top	14	16	0	20	22
Left	2	2	0	2	2

* See section 3.5.8. Weight Accumulation (in Operation)

0 Items GR
0.0 lb GR Total

5 Items NT
8333.5 lb NT Total

2 Items GR
4166.7 lb GR Total

6 Items NT
9166.8 lb NT Total

Here you see a sample ticket with 4 gross accumulations stored.

Here you see a sample ticket with 5 NET accumulations stored. Note that the Tare weight is not shown.

Gross weight and NET weight can be accumulated simultaneously in the FB2250. Each Gross weight stored will be in its own register and each NET weight stored will be in its own register, completely independent from each other.

PIECE COUNT

Field	Time	Date	Gross	Tare	Net	Count1	Count2
Visible	YES	YES	YES	YES	YES	Piece	Piece
Top	2	2	6	8	10	14	16
Left	2	13	7	7	7	7	7

* See section 3.5.14 Piece Counting (in Operation)

Container weighs 5.0 lb .
5 pieces weigh 1.0 lb
Pieces cannot be accumulated.
When PRINT key was pressed, 5 pieces were still on the scale.

$$
\begin{aligned}
& \text { 02:04PM } \\
& \text { 6.0 } \mathrm{lb} \text { GR } \\
& 5.0 \mathrm{lb} \text { TA } \\
& 1.0 \mathrm{lb} \text { NT } \\
& \\
& \\
& 5 \text { Pieces } \\
& 0 \text { Total Pieces }
\end{aligned}
$$

PIECE COUNT and TOTAL

Field	Time	Date	Gross	Tare	Net	Count1	Count2
Visible	YES	YES	YES	YES	YES	Piece	Piece
Top	2	2	6	8	10	14	16
Left	2	13	7	7	7	7	7

* See section 3.5.15. Piece Count and Total (in
Operation)

Container weighs 5.0 lb .
5 pieces weigh 1.0 lb
13 pieces have been accumulated previously before step 10 has been completed.
After step 10 was completed and when PRINT key was pressed, 5 pieces were still on the scale.

```
02:04PM 02-18-14
    6.0 lb GR
    5.0 lb TA
    1.0 lb NT
    5 Pieces
    18 Total Pieces
```


PEAK WEIGHT

Field	Time	Date	Gross	Tare	Net	Count1	Count2	Peak Wt
Visible	YES	YES	YES	YES	YES	NO	NO	YES
Top	2	2	6	8	10	0	0	14
Left	2	13	7	7	7	0	0	2

* See Section 3.5.16. Peak Weight (in Operation)

Container weighs 5.0 lb
Item(s) in container weighs 11.0 lb
The peak weight applied to the scale to date was18.0lb Gross weight and occurred on 02-17-14 @ 01:04PM

02:04PM
02-18-14
16.0 lb GR
5.0 lb TA
11.0 lb NT
18.0 lb Peak Weight

02-17-14 01:04PM

APPENDIX I: DATA OUTPUT FORMATS

A. General Notes

<CR> = means carriage return character
<LF> = line feed character
<SP> = space character
<EOT> = end of transmission character
<...> = used to indicate individual characters for clarity only (not present in data stream)
Power must be cycled after each output download otherwise the FB2250 will not save the downloaded data and will default to the previous setting.

B. Fairbanks/ Toledo Continuous Output

<STX><A><C><WWWWWW><TTTTTT><CR>
A = Status Word A
B = Status Word B
C = Status Word C
W = Displayed Weight
T = Tare Weight
Leading zeroes are not suppressed. The Continuous Computer Output is an uninitiated, unrequested output that is transmitted at a fixed time interval.

B. Fairbanks/ Toledo Continuous Output, Continued

Character String	Description
STX	Start of Text character: (02 Hex)
A	Status Word A
B	Status Word B
C	Status Word C
xxxxxx	Displayed Weight : $x=$ Weight (6 characters if grad size does not have a decimal point.) (5 characters if the grad size does have a decimal point. The decimal point is not sent as part of the character string.
xxxxxx	Tare Value : $\mathrm{x}=$ Tare (6 characters if the grad size does not have a decimal point.) (5 characters if the grad size does have a decimal point. The decimal point is not sent as part of the character string
CR	Carriage Return Character: (0 D hex)
CS	CheckSum Character : If enabled, this character consists of the last eight bits of the binary sum of all characters transmitted up to this checksum character.

Status Word A Bit \#			Decimal Point or Zero Location					
	x00	x0	x	X.X	x.xx	x.xxx	x.xxxx	x.xxxxx
0	0	1	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1
2	0	0	0	0	1	1	1	1
Increment Size								
Count by 1				Count by 2			Count by 5	
3	1			0			1	
4	0			1			1	
5				Always Logic 1				
6				Always Logic 0				
7				Parity Bit				

B. Fairbanks/ Toledo Continuous Output, Continued

Status Word B			
Bit \#		Description	
0	Gross $=0$		Net $=1$
1	Positive $=0$		Negative $=1$
2	In Range $=0$		Overcapacity = 1
3	No Motion = 0		Motion = 1
4	$\mathrm{lb}=0$		$\mathrm{kg}=1$
5	Always Logic 1		
6	Normal = 0		Power Up = 1
7	Parity Bit		
Status Word C			
Bit \#		Description	
0	Always Logic 0		
1	Always Logic 0		
2	Always Logic 0		
3	Normal $=0$		Print Switch Pushed = 1
4	Always Logic 0		
5	Always Logic 1		
6	Normal $=0$		Keyboard Tare = 1
7	Parity Bit		

B. Cardinal 738 Continuous Scorehoard Output

<CR><P><WWWWWW><m><SP><U><SP><g><SPSP><ETX>

W = Displayed weight
$\mathrm{P}=$ Polarity $\quad+=$ Positive weight

- = Negative weight
$\mathrm{U}=$ Units

$$
\begin{aligned}
& \mathrm{lb}=\text { pounds } \\
& \mathrm{kg}=\text { kilograms }
\end{aligned}
$$

$\mathrm{m}=$ Motion or $\mathrm{o}=$ Overload
$\mathrm{g}=$ Gross; $\mathrm{n}=$ Net
SP = Space

Leading zeroes are not suppressed

C. Weightronics WI-120 Continuous Output

<G><P><WWWWWW><SP><U><CR><LF>

G = Gross; $\mathrm{N}=$ Net
$\mathrm{P}=$ Polarity $\quad+=$ positive weight

- = negative weight
$\mathrm{U}=$ Units

$$
\begin{aligned}
& \mathrm{lb}=\text { pounds } \\
& \mathrm{kg}=\text { kilograms }
\end{aligned}
$$

SP = Space

Leading zeroes are not suppressed

D. Condec Continuous Output

<STX><P><WWWWWWW><U><G><M><CR>

$$
\mathrm{P}=\text { Polarity } \quad \text { space }=\text { positive weight }
$$

- = negative weight

W = Displayed weight
$\mathrm{U}=$ Units
$L=$ pounds
$K=$ kilograms

G = Gross; $\mathrm{N}=$ Net
M = Motion

Leading zeroes are suppressed

E. Demand Output - Default

Activated by the receipt of a <CR>.
Gross Weight - No Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <SP> <SP> <G> <R> <SP> <SP> <CR> <LF> <EOT>

Gross Weight - Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <SP> <SP> <g>
<r> <SP> <SP> <CR> <LF> <EOT>

Net Weight - No Motion - decimal points included <SP> <W> <W> <W> <W> <W> <W> <SP> <l> <SP> <SP> <N> <T> <SP> <SP> <CR> <LF> <EOT>

F. Continuous Output - Default

Outputs once every display update rate cycle.
Continuous Output formatted output. Same for Poll and Auto
Gross Weight - No Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <SP> <SP> <G> <R> <SP> <SP> <CR> <LF> <EOT>

Gross Weight - Motion - decimal points included <SP> <W> <W> <W> <W> <W> <W> <SP> <|> <SP> <SP> <g> <r> <SP> <SP> <CR> <LF> <EOT>

Net Weight - No Motion - decimal points included <SP> <W> <W> <W> <W> <W> <W> <SP> <l> <SP> <SP> <N> <T> <SP> <SP> <CR> <LF> <EOT>

Net Weight - Motion - decimal points included <SP> <W> <W> <W> <W> <W> <W> <SP> <l> <SP> <SP> <n> <t> <SP> <SP> <CR> <LF> <EOT>

G. PLC [Do not use.]

The PLC selection is no longer functional within the PC2250 software and should not be used or selected.

General Information

The information below is automatically configured by the FB2250 and is provided as supplemental information only.
Continuous Output, transmitting data on every other A/D update

- Approximately 32 transmissions per second.

The output string is $\mathbf{1 2}$ characters, seen as "WWWWWWWUumm<eot>" where,

Baud Rate	19,200
Data Bits	$\mathbf{8}$
Parity	None
Stop Bit	1
Mode	Continuous

<wwwwwww> = Weight including decimal point and negative sign.
Negative sign precedes most significant digit and may be preceded by space characters.
<uu> = units "lb", "kg", "oz", or "g ". "oz" may indicate ounces, or lb/ounces.
<mm> = mode "GR" or "NT" for stable weight, or "gr" or "nt" for motion.
<eot> = end of text.

Example 1: Gross - Ibs. - Weight Stable

<WWWWWWW> <|> <G> <R> <EOT>
Example 2: Gross - lbs. - Weight in Motion <WWWWWWW> <l> <g> <r><EOT>

Example 3: Net - kgs. - Weight Stable

<WWWWWWW> <k> <g> <N> <T> <EOT>

Example 4: Net - kgs. - Weight in Motion

<WWWWWWW> <k> <g> <n> <t> <EOT>
NOTE: Once FIELDBUS OPTIONS have been programmed, the installing technician's setup is complete.

Specialized tools available from: https://www.anybus.com/support/file-doc-downloads/anybus-compactcom-30-series

Interface of the HMS COMMUNICATIONS device, power supply to same device, and programming of the PLC is strictly the responsibility of the customer.
H. UPS

- Serial Data Output Format for UPS Worldship Software.

The instrument will transmit the following string of data.
Character Number $\quad 123456789101112131415161718$

String 1

NOTES:

- Characters denoted by " X " are characters 0-9.
- Leading zeroes are replaced with spaces (SP).
- Character 5 is a decimal point (HEX 2E).
- Lower case "l" and "b" for Avoirdupois Units, or " k " and " \mathbf{g} " for Metrics Units.
- The first weight character will be a minus (-), HEX 2D, If weight is negative.
- Characters separated with a "/" denoted one of the characters will be transmitted.
- Lower case gr in characters 12 and13 indicates scale motion.
- Upper case indicates stable weight.
- EOT, HEX 04 is transmitted in "HiCAP" condition.
- Transmission will occur when a CR (Hex 0D) carriage return is received.

I. P Ship

- Serial Data Output Format for P Ship, used to interface to FedEx Shipping Programs.

All computer commands and scale responses are ASCII Character Strings, where:
<CR> is an ASCII carriage return (hexadecimal OD)
<LF> is an ASCII line feed (hexadecimal OA)
<ETX> is an ASCII End-Of-Text (hexadecimal 03)
(STATUS) is a two ASCII number representation of the scale status (in the form of hexadecimal $3 x 3 x$, where the bit pattern of the low nibbles, indicated by an "x", determine the actual status conditions)

COMPUTER RESPONSE	SCALE RESPONSE	COMMAND RESULT
W<CR>	<LF><SP>XXX.XXUU<CR>(STATUS)<ETX>	Returns the weight and scale status in two ASCII digits.
S<CR>	<LF>S(STATUS)<CR><ETX>	Returns the scale Status in two ASCII digits (defined in the following section)
Z<CR>	No response	Zeroes the scale
All Else	<LF>?<CR>	Unrecognizable command

Notes: In the scale response to " $\mathrm{W}<\mathrm{CR}>$ ":

1. $\mathbf{X X X} . \mathbf{X X}=\quad$ A five digit number with two digits to the right of the decimal point which is the displayed scale weight.
2. $\mathrm{SP}=\quad$ An ASCII space (hexadecimal 20). In the event of a negative weight, an ASCII, "-" (hexadecimal 2D) is returned in this location.

I. P Ship, Continued

3. UU =

A two character weight identifier. If the scale is configured to weigh kilograms, a "KG" (uppercase letters) will be returned, if configured for pounds, "LB" (uppercase letters) will be returned.
4. The decimal point is returned by the scale as part of the ASCII string.
5. Interpretation of scale status digits

The high order nibble of each status byte has a value of 3 (0011 B). The low order nibble of the first and second bytes are defined as follows:

$$
\text { 1st Byte: } \quad \begin{aligned}
\text { Bit } 0-\text { High } & =\text { scale is in motion } \\
\text { Low } & =\text { scale is stable } \\
\text { Bit } 1-\text { High } & =\text { scale at zero } \\
\text { Low } & =\text { scale not at zero } \\
\text { Bit } 2-\text { Low } & =\text { not used } \\
\text { Bit } 3-\text { Low } & =\text { not used }
\end{aligned}
$$

2nd Byte: \quad Bit 0 - High = scale is below zero
Low = scale is not below zero
Bit 1 - High = scale is over capacity
Low = scale is not over capacity
Bit 2 - High = scale ROM program failure Low = scale ROM okay
Bit 3 - High = faulty calibration data* Low = scale calibration okay
*This is the result of an incorrect checksum
An example of the scale response to an " S " command would be:
<LF>S20<CR><ETX>
The following status conditions are in effect for this response:
-scale at zero
-scale is not below zero
-scale is not over capacity
-scale ROM okay
-scale calibration okay

Char	Dec	Hex
NUL	0	0
SOH	1	1
STX	2	2
ETX	3	3
EOT	4	4
ENQ	5	5
ACK	6	6
BEL	7	7
BS	8	8
HT	9	9
LF	10	a
VT	11	b
FF	12	c
CR	13	d
SO	14	e
SI	15	f
DLE	16	10
DC1	17	11
DC2	18	12
DC3	19	13
DC4	20	14
NAK	21	15
SYN	22	16
ETB	23	17
CAN	24	17
EM	25	19
SUB	26	1 a
ESC	27	1 b
FS	28	1 c
GS	29	1 d
RS	30	1 e
US	31	1 f
SP	32	20

Char	Dec	Hex
!	33	21
"	34	22
\#	35	23
\$	36	24
\%	37	25
\&	38	26
	39	27
(40	28
)	41	29
*	42	2a
+	43	2b
,	44	2c
-	45	2d
	46	2 e
1	47	2 f
0	48	30
1	49	31
2	50	32
3	51	33
4	52	34
5	53	35
6	54	36
7	55	37
8	56	38
9	57	39
:	58	3a
;	59	3b
<	60	3c
$=$	61	3d
	62	3 e
?	63	3 f
@	64	40
A	65	41

Char	Dec	Hex
B	66	42
C	67	43
D	68	44
E	69	45
F	70	46
G	71	47
H	72	48
I	73	49
J	74	$4 a$
K	75	$4 b$
L	76	$4 c$
M	77	$4 d$
N	78	4 e
O	79	$4 f$
P	80	50
Q	81	51
R	82	52
S	83	53
T	84	54
U	85	55
V	86	56
W	87	57
X	88	58
Y	89	59
Z	90	$5 a$
I	91	$5 b$
I	92	$5 c$
J	93	$5 d$
A	94	$5 e$
-	95	$5 f$
a	96	60
b	97	61
		62

Char	Dec	Hex
c	99	63
d	100	64
e	101	65
f	102	66
g	103	67
h	104	68
i	105	69
j	106	6 a
k	107	6 b
l	108	6 c
m	109	6 d
n	110	6 e
o	111	$6 f$
p	112	70
q	113	71
r	114	72
s	115	73
t	116	74
u	117	75
v	118	76
w	119	77
x	120	78
y	121	79
z	122	7 a
$\{$	123	7 b
l	124	7 c
$\}$	125	7 d
\sim	126	7 e
DEL	127	7 f

APPENDIX III: FB2250 REMOTE DISPLAY WIRING

RS232 INTERFACE WIRING (Master)				FB2250/55 REMOTE DISPLAY			FB2250* REMOTEDISPLAY		
MODEL	COM	CONNECT		COM	CONNECT		COM	CONNECT	
$\begin{aligned} & \text { FB2200 } \\ & \text { (ABS) } \end{aligned}$	1	3	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	1	5	GND	1	TB4(A)-4	GND	1	TB4-4	GND
$\begin{array}{\|l} \text { FB2200 } \\ \text { (SS) } \end{array}$	1	3	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	1	5	GND	1	TB4(A)-4	GND	1	TB4-4	GND
FB2255 or FB2250	1	TB4(A)-2	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	1	TB4(A)-1	RX	1	TB4(A)-2	TX	1	TB4-2	TX
	1	TB4(A)-4	GND	1	TB4(A)-4	GND	1	TB4-4	GND
	2	TB4(B)-2	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	2	TB4(B)-1	RX	1	TB4(A)-2	TX	1	TB4-2	TX
	2	TB4(B)-4	GND	1	TB4(A)-4	GND	1	TB4-4	GND
FB2250*	1	TB4-2	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	1	TB4-1	RX	1	TB4(A)-2	TX	1	TB4-2	TX
	1	TB4-4	GND	1	TB4(A)-4	GND	1	TB4-4	GND
	2	TB4-7	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	2	TB4-6	RX	1	TB4(A)-2	TX	1	TB4-2	TX
	2	TB4-9	GND	1	TB4(A)-4	GND	1	TB4-4	GND
2300	1	TB4-1	TX		TB4(A)-1	RX	1	TB4-1	RX
	1	TB4-2	GND	1	TB4(A)-4	GND	1	TB4-4	GND
2500	2, 3, 4	3	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	or 5	5	GND		TB4(A)-4	GND	1	TB4-4	GND
$\begin{aligned} & 2500 \\ & \text { (SS) } \\ & \hline \end{aligned}$	2, 3, 4	4	TX	1	TB4(A)-1	RX	1	TB4-1	RX
	or 5	8	GND	1	TB4(A)-4	GND	1	TB4-4	GND
2800	A	TB3-2	TX	1	TB4(A)-1	RX	1	TB4-1	RX
		TB3-4	GND	1	TB4(A)-4	GND	1	TB4-4	GND
	B	TB2-2	TX	1	TB4(A)-1	RX	1	TB4-1	RX
		TB2-4	GND	1	TB4(A)-4	GND	1	TB4-4	GND
5200A	1 or 2	4	TX	1	TB4(A)-1	RX		TB4-1	RX
		5	RX	1	TB4(A)-2	TX	1	TB4-2	TX
		8	GND	1	TB4(A)-4	GND	1	TB4-4	GND

* Old style with 28600 Main PCB.

APPENDIX IV: REMOTE DISPLAY ACTIVE KEYS

INSTRUMENT	FB2250 ACTIVE FRONT PANEL KEYS
FB2200	No Active Keys
FB2250	Units, Zero, Gross Net, Auto Tare, Print *
FB2255	Units, Zero, Gross Net, Auto Tare, Print *
$\mathbf{2 3 0 0}$	No Active Keys
$\mathbf{2 5 0 0}$ / FB2550	No Active Keys
$\mathbf{2 8 0 0}$	No Active Keys
$\mathbf{5 2 0 0 A}$	Units, Gross Net

* The "master" FB225X must have the printer on COM 1 and COM 1 must be configured for Button. COM 2 of the "master FB225X must be configured for Poll and the FB225X acting as the remote display must be connected to COM 2 of the "master".

APPENDIK V: REMOTE PC COMMANDS

Transmitting certain ASCII characters to the FB2250 will duplicate a key-press from a remote location via the RS 232 serial connection to Port 1. The baud rate, parity, and stop bits must match. The data bit length is 8 bits.

ASCII CHARACTER FUNCTION PERFORMED / COMMENTS

\mathbf{Z} (upper case) Zero. Active in the Polled or Button Modes
A (upper case) Tare (Auto Tare). Active in the Polled or Button Modes
U (upper case) Change Units. Active in the Polled or Button Modes
\mathbf{g} (lower case) Toggle Gross / Net. Active in the Polled or Button Modes
\mathbf{P} or \mathbf{p} (either case) ' P ' or ' p ". Active in the Polled or Button Modes The output will be the same as if the instrument front panel switch is operated. This output is formatted via the PC2250 program, using the 'Format Ticket' tab and can include any of the field items and in the order prescribed.

CR (upper case) Carriage Return. Active in the Polled Mode Output will be the displayed weight, either Net or Gross. If Motion then "GR" and "NT" are transmitted as "gr" and "nt". Both strings are terminated with; Carriage Return, Line Feed, End Of Transmission, <CR><LF><EOT>

APPENDIX VI: FB2250 PANEL MOUNT DIMENSIONS

Panel Mount cutout dimensions are $11.0^{\prime \prime} \times 9.0^{\prime \prime} \times 3.25$ " minimum.

Operator Manual

FB2550 Series Instrument In/Out Application Network Application

Amendment Record FB2550 Series Instrument Service Manual, 51254

Manufactured by Fairbanks Scales Inc.
821 Locust
Kansas City, Missouri 64106

Created 10/2010
Revision 1 5/2011 Released document.
Revision 2 4/2012

Revision 3 7/2012 Added Network Application information and update images.
Revision $4 \quad 9 / 2014 \quad$ Numerous programming updates, printer replacement, revised many Instrument descriptions and images to match upgrades.
Revision 5 2/2015 Added Appendix V
Revision 6 1/2016 Service \& Maintenance > Input Data correction
Revision 7 6/2016 Updated Input / Output chapter > Updated TM220 printer
Revision 8 02/2017 Moved Fieldbus information to Appendix I, Updated Condec output

Disclaimer

Every effort has been made to provide complete and accurate information in this manual. However, although this manual may include a specifically identified warranty notice for the product, Fairbanks Scales makes no representations or warranties with respect to the contents of this manual, and reserves the right to make changes to this manual without notice when and as improvements are made.

It is the responsibility of the requesting party to develop, maintain, install, and connect networking devices and general network connectivity as it applies to the originating party's network. No warranty or guarantee, expressed or implied, concerning the network, its design, its installation, or operational characteristics has been offered by Fairbanks Scales. Fairbanks Scales shall not be liable for any loss, damage, cost of repairs, incidental or consequential damages of any kind, whether or not based on express or implied warranty, contract, negligence, or strict liability arising in connection with the design, development, installation, or use of an intended network.

Trademarks

Award is a trademark of Award Software International, Inc.
CF and Compact Flash are trademarks of ScanDisk Corporation.
Microsoft, Microsoft Windows XP Pro, Windows XP Pro Embedded, and MS-DOS are either trademarks or registered trademarks of Microsoft Corporation.
Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated.
All other product names mentioned herein are used for identification purpose only and may be trademarks and/or registered trademarks of their respective companies.

© Copyright 2010-2017

This document contains proprietary information protected by copyright. All rights are reserved; no part of this manual may be reproduced, copied, translated, or transmitted in any form or by any means without prior written permission of the manufacturer.

Table of Contents

SECTION 1: GENERAL INFORMAtION 10
1.1. Introduction 10
1.1.1. FB2550 Standard Features 11
1.1.2. Internal Instrument Components. 11
1.1.3. Two Interface Types 11
1.1.4. External Scale Components 11
1.1.5. Scale Components 12
1.2. Specifications 13
1.3. What is Intalogix Technology? 14
SECTION 2: COMPANY SERVICE INFORMATION 10
2.1. General Service Policy 10
2.2. Users' Responsibilities 11
SECTION 3: SECURITY, LOGINS \& PASSWORDS 10
3.1 Levels of Security 10
3.2. Login 11
3.3. Reports Login 12
3.4. Changing Passwords 13
3.4.1. Write Customer Password 13
3.4.2. Write Remote Customer Password. 14
SECTION 4: STANDARD USER OPERATIONS 19
4.1. Introduction 19
4.1.1. Keypad Functions 19
4.1.2. External Keyboard Functions 20
4.2. Weighing Operations 21
4.2.1. Unloaded Scale Functions 21
4.2.2. Inbound/Outbound Weighing 22
4.2.3. Gross Weighing 23
4.2.4. Gross/Tare/Net Weighing 24
4.3. Operator Menu Programming 25
4.3.1. Time and Date Format 25
4.3.2. Time and Date 26
4.3.3. Ticket Number 26
4.3.4. Load Cell Diagnostics 27
4.4. Proper Shutdown Procedure 28
SECTION 5: AUDIT TRAIL 29
5.1. Login 29
5.2. Calibration Audit Trail 29
5.3. Configuration Audit Trail 29
SECTION 6: PROGRAMMING 30
6 .1. Introduction 30
6.2. Shortcut Keys 31
6.3. Customized Instrument Configurations 32
6.4. Programmable Legends 32
6.5. Programmable Prompts 33
6.6. Entry Sequence Prompts 34
6.7. Vehicle Image Type 35
6.8. Threshold Weights 36
6.9. On Scale Alarm 37
6.10. Blind Counter 38
SECTION 7: SUPERVISOR PROGRAMMING 39
7.1. Introduction 39
7.2. Operator Menu 40
7.2.1. Entering a New Tare Automatically. 40
7.2.2. Entering a New Keyboard Tare. 41
7.2.3. Resetting the Ticket Number 41
7.3. Configuration Menu 42
7.3.1. Edit Customers. 42
7.3.2. Edit Products 43
7.3.3. Edit Product Groups 46
7.3.4. Edit Tares. 48
7.3.5. Edit Tags 49
7.3.6. Deleting Incomplete Transactions. 50
7.3.7. Clear Totals 51
7.4. Reports 51
7.4.1. Master File Reports 52
7.4.2. Transaction Reports 54
7.4.3. Summary Reports 58
7.4.4. Email Transaction. 60
7.4.5. Scale Summary Audit Report. 61
SECTION 8: INPUT/ OUTPUT 63
8.1. Printers 63
8.1.1. Printer Switch Settings 63
8.1.2. iDP3550 Tape Printer 64
8.1.3. TM-U220 Tape Printer 65
8.1.4. SP700 Tape Printer 67
8.1.5. OKI ML420 Report Printer 69
8.1.6. XEROX ${ }^{\circledR}$ Phaser 3040 Report Printer 73
8.1.7. TM-U590 Ticket Printer 75
8.1.8. TM-U295 Ticket Printer 76
8.1.9. SP298 Ticket Printer 77
8.1.10. SP2000 Ticket Printer 79
8.1.11. SP2200 Ticket Printer 79
8.1.12. Programming the Printers 80
8.1.13. Serial Printer Programming 81
8.1.14. USB Printer Programming 83
8.2. Format Tickets 85
8.3. Web Ticket Layout 89
8.3.1. Overview. 89
8.3.2. Programming a Web Ticket. 89
8.4. Serial Card 95
8.5. Serial 20 mA Interfaces 96
8.5.1. Multi-Function Board 96
8.5.2. Serial Expansion Board 99
8.6. Configure Outputs 100
8.6.1. Configuring an Output Data String 100
8.6.2. Two Methods of Formatting 100
8.6.3. Method 1 - Preconfigured Output 101
8.6.4. Method 2 - Customizing Data Output Strings 104
8.6.5. Configuring a COM Port for Scale Summing 110
8.7. IP Output Configuration 111
8.8. RS-485 Configuration 112
8.9. Network Parameters Configuration 113
8.10. Fieldbus Protocols and Formats 115
8.10.1. Transmission Methods 115
8.10.2. Communication Format. 115
8.10.3. Handling Network Traffic 115
SECTION 9: ACCESSORIES 130
9.1. Accessory Parts List 130
9.1.1. Printers and Accessories 130
9.1.2. Additional Accessories 131
9.2. Programming the Traffic Light Control 132
9.3. Video Camera Programming 136
9.4. External Display [Dual Cloning] 138
9.4.1. Standard Setup 138
9.4.2. Display Settings Defaults 139
9.4.3. Disabling the External Display 140
9.4.4. Restoring the Display with an External Keyboard 141
SECTION 10: SERVICE \& MAINTENANCE 130
10.1. Database Maintenance 130
10.1.1. Database Backup 130
10.1.2. Database Restore. 136
10.1.3. Re-Index Database 139
10.1.4. Transaction Data Backup Days Reminder 139
10.1.5. Completed TXN IMGS 140
10.2. Printer Troubleshooting 141
APPENDIX I: FIELDBUS REFERENCE 156
A. Overview. 156
B. DeviceNet (30923) 157
C. ControlNet (30924) 159
D. Modbus RTU (30925) 161
E. Modbus-TCP Interface Kit (32760) 162
F. ProfiBus-DP (30922) 163
G. EtherNetIP (31974) 165
H. Fieldbus Protocols and Formats 166
I. DT7000 Gateway 167
J. Standard DT7000 Fieldbus Configuration 175
K. Fieldbus Data Representation. 177
APPENDIX II: DATA OUTPUT 156
A. Remote Display Output 156
B. Configure Output 156
C. SMA Protocol 160
D. EXAMPLES 162
APPENDIX III: 20MA CODES 163
APPENDIX IV: TICKET DATA FIELDS 165
APPENDIX V: REMOTE FUNCTION COMMANDS 167
APPENDIX VI: FIELDBUS REFERENCE 168
A. Always Update, Yes. 185
B. Filter Off. 185
C. Expansion Filtering, Disabled. 185

SECTION 1: GENERAL INFORMATION

1.1. Introduction

The FB2550 is a modular designed Instrument, configurable and upgradable using Printed Circuit Modules.

- Each module provides a specific scale or I/O functionality to the weighing system.
- The FB2550 Instrument has four enclosure styles.
- DESKTOP - PANEL MOUNT - RACK MOUNT - NEMA 4 MODEL
- A seven-inch (7") color graphic display with touchscreen operation and easy-tounderstand prompts.
- The FB2550 Instrument is designed to function with Intalogix ${ }^{\circledR}$ Technology, Analog Load Cells, or Mettler Toledo DigiTol ${ }^{\circledR}$ Load Cells.
- An integrated e-mail client is configurable to alert a service organization or individual of a problem prior to total failure.
- These error notifications include such warnings as load cell failure, and calibration changes.
- Several other notifications are available inform the proper individuals of the scale's operating condition. This system uses the customer's existing email infrastructures.
- Requires a connection to the customer's PC Network.
- The Instrument provides many connectivity and data acquisition capabilities with the following protocol types.

$$
\begin{array}{rlrl}
-\quad \text { RS232 } & -\quad \text { RS422 SERIAL } \\
\text { PORTS }
\end{array}-\quad \text { USB } \quad-\quad \begin{aligned}
& \text { PCI 10/100 MBS } \\
& \text { ETHERNET } \\
& \text { INTERFACE }
\end{aligned}
$$

1.1.1. FB2550 Standard Features

- 7" full-color display
- Ethernet
- SQL database
- Touch screen operation
- Integrated web server
- Multiple/ Expandable serial ports
- Built-in reporting functions
- IP camera interface with onscreen image
- Stainless steel construction
- Programmable F-key prompts

1.1.2. Internal Instrument Components

- Single Board Computer (SBC)
- Flash Module
- Multi-Function Board
- Expansion Board
- Expansion Modules
- Power Supply
- 7" Display, WVGA LED
- Intalogix Communications Board
- Accessory 789

NOTE: Any combination of up to seven (7) Interface Modules can be installed. This number could be less, depending on the module kit type.

1.1.3. Two Interface Types

The FB2550 interfaces to a single scale using one of two different types of technology hardware interfaces.

- Intalogix ${ }^{\circledR}$ Technology
- Analog Technology

1.1.4. External Scale Components

PART NO.	DESCRIPTION	MAX PER INSTRUMENT
$\mathbf{3 3 4 7 6}$	External Intalogix ${ }^{\circledR}$ Interface	7
$\mathbf{3 1 2 8 1}$	Dual External Intalogix ${ }^{\circledR}$ Interface	7
$\mathbf{3 1 2 8 2}$	External Analog Interface	7
$\mathbf{3 1 2 8 3}$	Dual External Analog Interface	4
$\mathbf{3 1 2 8 4}$	External QMB Interface	7

1.1.5. Scale Components

When facing the scale, Load Cell No. $\mathbf{1}$ is located in the far-left.

1.2. Specifications

Enclosure	Desktop (30770), Panel Mount (31053), Rack Mount (31173), NEMA 4 (31150)
BIOS	Award ${ }^{\text {™ }}$ Software
Memory	1 GB RAM
Data Storage	2 GB Removable Micro SD Card
Operating System	Windows XP Professional Embedded, 8 GB Flash Module
Serial Outputs	Up to 12 serial ports and 4 built-in USB ports. - THE USB PORT ON THE MULTI-FUNCTION BOARD IS DEDICATED FOR A KEYBOARD ONLY.
Digital I/O	Up to 28 I/O Components
Ethernet Interface	PCI 10/100 Mbs Ethernet Complies with IEEE 802.3x Standards
Display	Seven inch (7") Diagonal Touchscreen LCD Color
Scale Interface Options	- Intalogix Technology - Intalogix Power Supply and Communications (30916) - Scale Interface Controller (30918) - External QMB Interface (30433) - External Intalogix Communication Box (33476) - Maximum of twenty (20) 1000Ω or twelve (12) 350Ω cells - External Dual Intalogix Communication Box (32181). - Up to forty (40) 1000Ω or twenty-four (24) 350Ω cells. - Analog Technology. - Internal Analog Load Cell Interface (5v excitation) (31079) - Up to sixteen (16) 1000Ω or eight (8) 350Ω cells - External Analog Load Cell Interface (10v excitation) (31282) - Up to sixteen (16) 1000Ω or ten (10) 350Ω cells - External Dual Analog Load Cell Interface (10v excitation) (31283) - Up to sixteen $(16 \times 2=32) 1000 \Omega$, or ten $(10 \times 2=20) 350$ Ω cells - Maximum of two (2) per FB2550
Power Requirements	100-130 VAC @ 12A @ $60 \mathrm{~Hz}+/-2 \mathrm{~Hz}$ - SEPARATE AND DEDICATED CIRCUIT. - NEUTRAL TO GROUND VOLTAGE SHOULD BE < 0.2 VAC - ONE AMP (1A) IS TYPICAL. TWELVE AMPS (12A) IS A FULLY EQUIPPED MODEL.
ETL Listed	- Conforms to UL STD 60950-1. - CAN/CSA C 22.2 NO.60950-1-03.
Approvals	- CC\# 10-089 - MC\# AM-5805

1.3. What is Intalogix Technology?

Intalogix ${ }^{\circledR}$ Technology is a unique method of individual load cell communication, providing outstanding resolution, performance and diagnostic capabilities.

It is the most advanced technology available for processing Analog Load Cells or Strain Gauge Outputs.

- The Interface supplies 30VAC and 20VDC to the Pit Power Supply (PPS), located at the scale platform.
- The "Enable" line controls the direction of the RS 485 half-duplex data weight communications from the Interface to the Smart Sectional Controller (SSC), and vice-versa.
- The PPS converts the AC to DC voltage, partially regulates it, and supplies it to the SSC, where it is further regulated and used to provide the Excitation Voltage to the Load Cells.
- The 20VDC is regulated in the PPS, and is used to supply the RS 485 Serial Communication Circuit.
- A switch setting in the SSC assigns it a Digital Address.
- In the SSC, the Load Cell converts Analog signals into Digital signals, and then converts the Digital signals into RS 485.
- The RS 485 Serial Communication from each SSC is then returned through the Pit Power Supply to the Instrument, where it is displayed as both Counts, and as Weight information, according to the programming parameters entered in the Instrument.

Older model SSC's furnished (+/-) 5 VDC Excitation.
Newer model SSC's furnish (+) 3.3 VDC and (-) 3.0 VDC Excitation.

SECTION 2: COMPANY SERVICE INFORMATION

2.1. General Service Policy

Prior to installation, always verify that the equipment satisfies the customer's requirements as supplied, and as described in this manual.

- If the equipment cannot satisfy the application and the application cannot be modified to meet the design parameters of the equipment, the installation should NOT be attempted.
- Instructions within this manual apply to the instrument and its specific accessories. Installation procedures for printers and other peripherals are given in manuals specifically provided for those units. The instructions include a pre-installation checkout which must be performed either at the service center before the technician goes to the site, or at the site before he places the equipment in service.
- All electronic and mechanical calibrations and/or adjustments required to make this equipment perform to accuracy and operational specifications are considered to be part of the installation, and are included in the installation charge. Only those charges which are incurred as a result of the equipment's inability to be adjusted or calibrated to performance specifications may be charged to warranty.
- Absolutely no physical, electrical, or program modifications other than selection of standard options and accessories are to be made to this equipment. Electrical connections other than those specified may not be performed, and no physical alterations (mounting holes, etc.) are allowed and will immediately void warranty

> All load cells, load cell cables, and all interconnecting cables used for the scale components must be located a minimum of thirty-six inches (36") away from all single and multiple phase high energy circuits and electric current-carrying conductors.

- This includes, but is not limited to digital weight instruments, junction boxes, sectional controllers, and power supplies.
- This includes any peripheral devices, such as printers, remote displays, relay boxes, remote terminals, card readers, and auxiliary data entry devices.
- Scale components themselves must also be at least thirty-six inches (36") away from other high energy components, including the following devices.
- Any machinery with outputs of $\mathbf{1 2 0}, \mathbf{2 4 0}$, or $\mathbf{4 8 0}$ volts AC.
- High voltage wiring runs and stations, AC power transformers, overhead or buried cables, electric distribution panels, electric motors, florescent and high intensity lighting which utilize ballast assemblies, electric heating equipment, traffic light wiring and power, and all relay boxes.
- Scale components are not designed to operate on internal combustion engine driven electric generators and other similar equipment.
- This includes all digital weight Instruments and peripheral devices.
- Electric arc welding can severely damage scale components, such as digital weight Instruments, junction boxes, sectional controllers, power supplies, and load cells.

2.2. Users' Responsibilities

WARNING!

Absolutely no physical, electrical or program modifications other than selection of standard options and accessories can be made by customers to this equipment

Repairs are performed by Fairbanks Scales Service Technicians and Authorized Distributor Personnel ONLY!

Failure to comply with this policy voids all implied and/or written warranties
\checkmark All electronic and mechanical calibrations and/or adjustments required for making this equipment perform to accuracy and operational specifications should be performed by trained service personnel.
\checkmark Absolutely no physical, electrical or program modifications other than selection of standard options and accessories are to be made to this equipment.

- Electrical connections other than those specified may not be performed
- Physical alterations, such as holes, etc., are not allowed.

> Please call your local
> Fairbanks Scales Representative for any questions, problems, or comments.

SECTION 3: SECURITY, LOGINS \& PASSWORDS

3.1 Levels of Security

The following describes all the security levels for accessing the FB2550 DAT programs.

1. STANDARD USER or WEIGHTS \& MEASURES OFFICIAL ACCESS

- No password is required with limited programming access.
- First Level Users can access these menus.
- HOME • AUDIT TRAIL
- OPERATOR MENU • RETURN TO WEIGHING

2. WRITE CUSTOMER LOGIN

- Allows all of the Standard User privileges.
- Supervisor Users can also access the CONFIGURATION MENU.
- The first-time-use WRITE CUSTOMER Password is 1, suggested to be changed upon login.

3. REPORTS LOGIN (FOR SUPERVISORS ONLY)

- Used for programming and printing reports from a remote location.
- The PASSWORD must be eight (8) characters, and entered in the FB2550 Instrument.

4. SERVICE ACCESS

- All installation and programming responsibilities.

	SERVICE TECNICIAN	A c c
	SUPERVISOR/ W\&M OFFICIAL $P W=1$	S S L
	STANDARD OPERATOR NO PW	v e l s

3.2. Login

Follow these steps to LOGIN.

1. While in the WEIGHT SCREEN, press the MENU button on the external keyboard to open the Configuration Home Page.
2. Select LOGIN.
3. Enter the Write Customer or Service Password.
4. Press the LOGIN button.
$\checkmark \quad$ WRITE CUSTOMER PASSWORD $=1$

These are first-time-use-only passwords.

- Change the passwords to ones which are office-related, and use both alpha and numeric characters.
- Store the password(s) in a safe place known by more than one manager.
- It is recommended to change passwords at least once a year.
- Passwords are normally case-sensitive.
- The REMOTE PASSWORD is eight (8) characters.

[^1]
3.3. Reports Login

The REPORTS LOGIN is used for programming and printing Reports from a remote location only.
5. Login remotely.
6. While in the WEIGH SCREEN, press the MENU button.
7. Select REPORTS LOGIN.
8. Enter the eight (8) character REMOTE PASSWORD.
9. Press the LOGIN button.

The REPORTS LOGIN option is only available when accessing the Instrument remotely.

The REMOTE PASSWORD is eight (8) alphanumeric characters long.

Remote Reports Menu

3.4. Changing Passwords

Noted below are suggestions for setting the first-time-use passwords.

- Passwords should be changed right after installation, and then stored in a safe place.
- Password characters are case-sensitive.
- Whenever possible, the password should use both alpha and numeric characters.
- These passwords should be known by more than one manager.
- It is recommended to change these passwords at least once a year.
- REMOTE PASSWORDS use eight (8) characters.

3.4.1. Write Customer Password

The Write Customer Password allows full-access to the CONFIGURATION MENU and all the lesser menus when the supervisor is programming from a remote location.

- The password can be any length
- This password is case-sensitive.

Follow these steps to change the WRITE CUSTOMER PASSWORD.

1. While in the WEIGHT SCREEN, press the MENU button on the external keyboard to open the Configuration Home Page.
2. Press LOGIN.
3. Enter the Write Customer Password.
4. Press the LOGIN button.
5. Open the CONFIGURATION MENU.

HOME	BАСК: Hом	
audit trail		
	Write Customer Passwor	
OPERATOR MENU	wite Rembrectiomerpasswora	
Configuration menu	Blind Counter	
SERVICE MENU	Database Editors	
EXPANSION CARDS	Database Maintenance	
RETURN TO WEIGHING	Reports	
	Programmable Legends	
		PAGE FORWARD

6. Select WRITE CUSTOMER PASSWORD.
7. Enter the new password in the CONFIG PASSWORD field, and again in the CONFIRM PASSWORD field.

- Press the SAVE CHANGES button.

3.4.2. Write Remote Customer Password

The REMOTE CUSTOMER must be programmed on the Instrument before it can be accessed with a web browser. The supervisor can then program the Instrument from any remote location using a pc or laptop.

- The password is case sensitive, and must be eight (8) characters.

Follow these steps to change the WRITE REMOTE CUSTOMER PASSWORD.

1. While in the WEIGHT SCREEN, press the MENU button to open the Configuration Home Page.
2. Press LOGIN.
3. Enter the Write Customer or Service Password.
4. Press the LOGIN button.
5. Open the CONFIGURATION MENU.
6. Select WRITE REMOTE CUSTOMER PASSWORD.
7. Enter an eight (8) character password in the REMOTE CONFIG PASSWORD field.
8. Reenter it in the CONFIRM PASSWORD field.

- Press the SAVE CHANGES button.

SECTION 4: STANDARD USER OPERATIONS

4.1. Introduction

4.1.1. Keypad Functions

KEY(S)	FUNCTION
Numeric Keys	These keys enter any NUMERIC DATA.
F1	Turns on Camera (if enabled)
F2	Expands Camera image to full screen (if enabled).
F3	REPRINT TICKET - Reprints the previously printed ticket. - When pressed while in the Weigh screen, it also displays a list of items, such as Loop, Customer, or Product during the weighing process..
F4	VOIDS - Permanently deletes the TICKET from the database.
F5	SHUTS DOWN the Instrument, displays only when the scale is unloaded. \bullet See Section 13.4. Proper Shutdown Procedure.
Enter	ACCEPTS/ STORES a data entry item.
Zero	ZEROs the scale.
Units	Toggles the UNITS option.
Menu	Initiates a PRINT CYCLE.
Arrow Keys	Opens the CONFIGURATION HOME MENU, allowing the programming functions.

IMPORTANT NOTE: An External Keyboard Accessory (31036 or 25498) is necessary for inputting tares, editing customers and products, entering alphabetic text, and for navigating thru program options.

4.1.2. External Keyboard Functions

KEY	FUNCTION
F1	Turns on Camera (if enabled)
F2	Expands Camera image to full screen (if enabled).
F3	REPRINT TICKET - Reprints the previously printed ticket. - When pressed while in the Weigh screen, it also displays a list of items, such as Loop, Customer, or Product during the weighing process..
F4	VOIDS - Permanently deletes a TICKET from the database.
F5	SHUTS DOWN the Instrument, displays only when the scale is unloaded. - See 4.4. Proper Shutdown Procedure
Alphabetic Keys	Enters all ALPHABETIC TEXT.
Numeric Keys/ Keypad	Enters NUMERIC DATA.
Arrow Keys	NAVIGATES through the programming choices.
Esc	CLEAR, RESET, or RESTART the Instrument, if in the SLEEP Mode.
HOME	Opens the CONFIGURATION HOME MENU, allowing the programming functions.
PAUSE	ZEROs the scale.
SCROLL	Enters the UNITS.
PRINT SCREEN	PRINTS the ticket.
SHORTCUT KEYS	FUNCTION
Ctrl + Shift + H	Displays the SYSTEM INFORMATION.
Ctrl + Shift + S	Displays the installed EXPANSION MODULES.

4.2. Weighing Operations

4.2.1. Unloaded Scale Functions

When the scale is unloaded, the FB2550 Instrument activates these options by using the Function Keys.

F3 - REPRINT TKT

9. Press the (F3) REPRINT TKT function button.
10. Select from one of these two options.
a. Reprint Last Ticket.
b. Reprint By Ticket Number.

- THIS OPTION APPEARS ONLY WHEN A TICKET WAS PRINTED PREVIOUSLY.

11. Press the ENTER button.

F4 - VOID (a ticket)
12. Press the (F4) VOID function button.
13. Input the TICKET NUMBER.
14. Press the ENTER button.
15. When the WARNING! message appears, press the VOID button.

F5 - POWER OFF

- For complete details, see Section 4.4. Proper Shutdown Procedure.

4.2.2. Inbound/Outbound Weighing

Follow these steps to weigh using the INBOUND/ OUTBOUND Mode.
16. The truck pulls onto the scale.

- The weight and new action buttons appear on the Instrument display window.
- The Function Key options change.

2a. Either the Tag Reader * identifies the vehicle and automatically generates the LOOP ID NUMBER,

OR...
2b. Input the LOOP ID number.
THEN...
3a. Press the INBOUND button if the truck is on its initial weighment.

- A "PROCESSING TRANSACTION" message displays first, followed by an "INBOUND TRANSACTION STORED" message.

OR...
3b. Press the OUTBOUND button if the truck is on its secondary weighment.

- A "PROCESSING TRANSACTION"

 message displays first, followed by an "COMPLETED TRANSACTION STORED" message.4. Press the ENTER button on the keyboard to save the transaction.

- Two windows display briefly, noting the
 transaction processes is complete.
* The Tag Reader (TransCore RFID Reader - 10-4002-009) is an optional accessory.

4.2.2. Inbound/Outbound Weighing, Continued

INBOUND LIST (F3)

1. To see all of the incomplete transactions, press the INBOUND LIST (F3) button.

- This function key option shows the details of an incoming truck on the scale.

2. Press the UP and DOWN ARROW button to select the correct transaction.
3. Either press the ENTER button on the keypad to save and process the transaction,

OR...
4. Press the PRINT button and deliver the ticket copy to the driver.

4.2.3. Gross Weighing

1. Drive the vehicle to be weighed on the platform.
2. Once the display stabilizes, press the PRINT key.

- A Gross Weight ticket prints.

4.2.4. Gross/Tare/Net Weighing

1. Drive the vehicle to be weighed on the platform.
a. Press either the KEY TARE or TARE button.
b. If KEY TARE is selected, enter the known Tare Weight on the keypad.
c. If TARE is selected, the weight on the display is captured as a Tare Weight.

2. Press the ENTER button on the keypad.
3. Load the vehicle with product.
4. Press the PRINT key, and a Gross-Tare-Net Ticket is printed.

- Mode Change - When a KEY TARE or TARE button is pressed, the scale automatically switches from the Gross Weighing Mode to the Gross-Tare-Net Mode.

5. To change the scale from the Gross-Tare-Net Mode back to the Gross Weighing Mode, press the KEY TARE button.

NOTE: If the display shows cell(s) failure, this indicates an error on the platform.
Check the platform for equipment, debris, or other materials and remove them. If this does not resolve the condition, call for service.

4.3. Operator Menu Programming

The OPERATOR MENU allows user programming operations to the instrument.

- Allows access to change the TIME AND DATE, TICKET NUMBER, and LOAD CELL DIAGNOSTICS (read only view).
- No password is required for these options.

4.3.1. Time and Date Format

This function programs how the Time and Date will display on the Instrument screen.

1. Press the MENU button.
2. Open the OPERATOR MENU.
3. Select the best TIME FORMAT.
4. Open the $\mathbf{A M} / \mathbf{P M}$ option, then select either the $\mathbf{1 2}$ HOUR or $\mathbf{2 4}$ HOUR format.

5. Select the DATE FORMAT.

- $\mathbf{H}=$ Hour - $\mathbf{M}=$ Minute $\quad \mathbf{S}=$ Second

6. Select the best DATE SEPERATOR formats, which include a (SPACE), /, and -.

- Press the SAVE CHANGES button when any changes are made, or they will be lost.
- Select BACK: OPERATOR MENU to return to the previous menu.

4.3.2. Time and Date

This function sets the Time and Date for the Instrument.
7. Enter the YEAR, MONTH, DAY, HOUR, and MINUTE options into the box next to the legend.
8. Press the SAVE CHANGES button when any changes are made, or they will be lost.

4.3.3. Ticket Number

This function opens a ticket for viewing and editing.
9. Enter the TICKET NUMBER by typing the correct value into the box next to the legend.

- Allows a maximum entry of six (6) digits.

10. Enter the MACHINE ID by typing the correct value into the box next to the legend.

- This resets the Loop ID Value.
$\checkmark \quad$ DEFAULT $=1$

- Press the SAVE CHANGES button, or they will be lost.
- Select BACK: OPERATOR MENU to return to the previous menu.

4.3.4. Load Cell Diagnostics

Instruments equipped with Intalogix ${ }^{\circledR}$ technology have Load Cell Diagnostics features for easier troubleshooting capabilities.

- To view LOAD CELL DIAGNOSTICS, select the correct scale.

The DIAGNOSTICS screen gives a quick snapshot of how each load cell is performing.

- CELL - Identifies the load cell in the scale platform.
- STATUS - Compares the load cell output to stored calibration values and posts a GOOD or BAD condition.
- COUNTS - Displays the load cell's current counts.
- GHOST - When the load cell communications uses Intalogix ${ }^{\text {TM }}$ Interface,
 the system electronically duplicates the load cell in the same section.
- This is mostly used for troublshooting faulty load cells.
- FLAG - Visual flags (*) are used to identify problem load cell(s) on the diagnostic screen until the flag is manually cleared .
- This improves the ability to identify intermittent issues.

NOTE: The TARE programming functions are unavailable to Standard Operators.

4.4. Proper Shutdown Procedure

- When there is no weight on the scale, the POWER OFF (F5) notification displays.
- Whenever there is weight on the scale, the F5 button is still active, but the legend is hidden.
- A Shut Off Warning appears whenever F5 is pushed and there is weight on the scale.
- The POWER OFF (F5) is inactive during any programming activities.

Follow these steps to properly shutdown the FB2550 Instrument.

1. While in the Weigh Screen and with nothing on the scale platform, press the F5 key.

- A Shut Off Warning appears.

2. Press ENTER, or touch the YES.
3. After proper shut-down is complete, ALWAYS UNPLUG THE INSTRUMENT from AC power.

- Until the FB2550 is unplugged from AC power, it will continue

Power Off
F5 to supply operating voltage to the instrument circuits.
4. Plug back in the Instrument to reboot it.

SECTION 5:AUDIT TRAIL

5.1. Login

The AUDIT TRAIL used primarily used by the Weights \& Measures Officials to make scheduled site inspections.
5. While in the WEIGH SCREEN, press the MENU button.
6. Press LOGIN.
7. Enter the Write Customer Password .
8. Press the LOGIN button.
9. Select AUDIT TRAIL.
10. Choose either CALIBRATION AUDIT TRAIL, or CONFIGURATION AUDIT TRAIL.

5.2. Calibration Audit Trail

The CALIBRATION REPORT denotes exactly when the scale calibrates.

- This option has view-only access, and cannot be edited.
- It displays the Time(s), Date(s) and a random Count, which is incremented to each of up to eight (8) displayed scales.
- The Count is a numeral of up to six (6) digits, determined randomly by the Instrument as an identifier.

5.3. Configuration Audit Trail

The CONFIGURATION REPORT displays all configuration changes.
This option has view-only access, and cannot be edited.

- It displays the Time(s), Date(s) and the random Count.

SECTION 6: PROGRAMMING

6.1. Introduction

While in the Weigh Screen, press the MENU button on the keypad to access the CONFIGURATION HOME window.

HOME	Returns the user to the Configuration Home Page.
AUDIT TRAIL	Identifies how many times and when changes are made to the scale's Calibration or Configuration settings. - See SECTION 5: AUDIT TRAIL for more information.
OPERATOR MENU	User access for Time/Date, Ticket Number, Load Cell Diagnostics, and Keyboard Tare entries. - See SECTION 7.2: OPERATOR MENU for more information.
CONFIGURATION MENU	Accesses communications programming and functions, ticket formats, programmable legends and prompts, camera inputs and weight threshold. - See SECTION 7.3: CONFIGURATION MENU for more information.
RETURN TO WEIGHING	Returns the user to the Weight Display Screen.

IMPORTANT NOTE: An External Keyboard Accessory (31036 or 25498) is necessary for inputting tares, editing customers and products, and entering alphabetic text.

6.2. Shortcut Keys

Described below are the shortcut programming keys. The Weigh Screen must first be displaying before any of these Shortcuts will function.

KEYS	FUNCTION(S)
MENU Button	Opens the PROGRAMMING menus.
CTRL + Shift + C	Opens the TOUCH SCREEN CALIBRATION.
CTRL + Shift + H	Displays the SYSTEM INFORMATION.
CTRL + ALT + Shift + R	Opens the DATABASE RECOVERY MENU. $-\quad$ INCLUDED ARE REBOOT INSTRUMENT, ATTEMPT RECOVERY, AND RESTORE TO FACTORY SETTINGS BUTTONS.
CTRL + Shift + S	Displays all the installed EXPANSION MODULES. $-\quad$ INCLUDED ARE CHECK FOR UPDATES AND RESCAN BUTTONS.
Ctrl + Alt + F12	Opens the DUAL DISPLAY MENU.

IMPORTANT NOTE: An External Keyboard Accessory (31036 or 25498) is necessary for inputting tares, editing customers and products, and entering alphabetic text.

While in the Weigh Screen, press the MENU button access the programming menus.

6.3. Customized Instrument Configurations

Configure FB2550 Instrument with the following menu functions.

- Programmable Legends
- Programmable Prompts
- Vehicle Images
- Threshold Weights
- Entry Sequence Prompts
- Blind Counter

6.4. Programmable Legends

Follow these steps to customize the FB2550 Instrument legends.

1. While in the WEIGH SCREEN, press the MENU button on the external keyboard.
2. Select LOGIN.

3. Enter the Write Customer Password or Service Password.
4. Press the LOGIN button.
5. Select the CONFIGURATION MENU.
6. Press select PROGRAMMABLE LEGENDS.
7. The data entry boxes accept keyboard alphanumeric entries to customize the legends the users will view when operating the instrument.

- Twenty (20) characters maximum.

EXAMPLE

Loop ID: ENTER TRUCK LICENSE NUMBER Scale 1: NORTH SCALE 1
8. Press the PAGE FORWARD.
9. Program the Legends for SCALES 5 thru 8.

- Press the SAVE CHANGES button, or they will be lost.
- Select BACK: CONFIGURATION MENU to return to the previous menu.

6.5. Programmable Prompts

Follow these steps to customize the

Programmable Prompts.

- There are ten (10) prompts available.

1. While in the CONFIGURATION MENU, press PAGE FORWARD.
2. Select PROGRAMMABLE PROMPTS.
3. Touch the EDIT THE ENTRY PROMPT X

to access the data entry screen for the custom prompt.
4. In the data entry box to the right of the Name: legend, enter the PROMPTS NAME or DESCRIPTION.
5. The data boxes to the right of the legends GTN:, Inbound:, and Outbound: will enable or disable the prompt for a combination of Inbound, Outbound or GTN operations.

\checkmark NO = DISABLE
$\checkmark \quad Y E S=E N A B L E$

EXAMPLES

Name: TRAILER NO.
Name: BILL OF LOADING NO.

- Press the SAVE CHANGES button, or they will be lost.
- Select BACK: CONFIGURATION MENU to return to the previous menu.

6.6. Entry Sequence Prompts

The ENTRY SEQUENCE PROMPTS MENU enables the built-in customer and product prompts for a combination of the Inbound, Outbound, or GTN operation sequences
The Loop ID GTN and Tare GTN prompts are enabled or disabled with this window.

1. While in CONFIGURATION MENU, press the PAGE FORWARD button once.
2. Select ENTRY SEQUENCE PROMPTS.
3. In the LOOP ID GTN menu, enter YES to enable or NO to disable the LOOP ID PROMPT when a GTN operation is performed.
4. In the TARE GTN menu, enter YES to enable or NO to disable the TARE PROMPT when a GTN operation is performed.
$\checkmark \quad$ The Loop ID GTN and Tare GTN must both be set to YES to perform the IN/OUT operation.

5. In the PRODUCT and CUSTOMER menus, enter YES to enable or NO to disable the prompt when a GTN operation is performed.

- Press the SAVE CHANGES button, or they will be lost.
- Select BACK: CONFIGURATION

MENU to return to the previous menu.

6.7. Vehicle Image Type

Follow these steps to customize the FB2550 Instrument truck image.

1. While in the CONFIGURATION MENU, press the PAGE FORWARD button once.

2. Select the TRUCK COLOR Option.

- Red
- Orange
- Yellow
- Green
- Blue
- Purple
- Black
- Brown
- Gray
- Press the SAVE CHANGES button when any changes are made, or they will be lost.

6.8. Threshold Weights

1. While in the CONFIGURATION MENU, press PAGE FORWARD once.
2. Select THRESHOLD WEIGHTS.

INITIAL WEIGHT sets the minimum amount the truck must weigh to initiate a weighment.

FINAL WEIGHT triggers an alert when the weight on the last section scale meets or exceeds the value entered.

- Used on a full electronic truck scale.
- Not used in the MANUAL MODE OF OPERATION.
- The data entry boxes to the right of the legend identifiers will accept keyboard numeric entries to enter the values required.
\checkmark Default INBOUND WEIGHT $=\mathbf{1 , 0 0 0} \mathrm{lbs}$.
\checkmark Default FINAL WEIGHT $=2,000$ lbs.

IMAGE CAPTURE WEIGHT sets the amount when a truck on the scale has a picture taken of it as it weighs, stored within that transaction and used for identification.

- Press the SAVE CHANGES button when any changes are made, or they will be lost.

6.9. On Scale Alarm

The ON SCALE ALARM gives an audio and visual alert whenever the Threshold Weight meets or exceeds the Initial Weight.

Follow these steps to set the parameters of the On Scale Alarm.
3. In the THRESHOLD MENU, press the ON SCALE ALARM button.

4. Enter the THRESHOLD WEIGHT amount.
5. Open Alarm Type, and select the correct one.

OFF	No alarm.
POPUP ONLY	Visual Alarm Message popup window, written by supervisor.
INTERNAL BUZZER	Audio alarm made by the Instrument.
RELAY BD-1 / RELAY BD-2	Trips a relay that activates a device, which sounds an (Relay Boards 1 \& 2) alarm, turns on a light, or activates another signal to alert users. Each board can control up to eight (8) relays.

6. Select RELAY 1 thru 8.
7. Set the alarm DURATION (in minutes).

- 1 to 99 minutes.

8. Input the visual ALARM MESSAGE for the popup message.
9. Enter either one specific scale, or ANY.

- Press the SAVE CHANGES button when any changes are made or they will be lost.
- Select BACK: CONFIGURATION MENU to return to the previous menu.

6.10. Blind Counter

1. While in the CONFIGURATION MENU, select BLIND COUNTER.

The BLIND COUNTER monitors all activity on the scale and triggers an event whenever any active scale exceeds the Initial Weight Threshold.

- The BLIND COUNTER does not generate a print.
- This records all activities that do not result in a print, as long as the Initial Weight Threshold is met and stable for ten (10)
 seconds.
Output may be directed to FILE OUTPUT, COM PORT OUTPUT, or both.
If the unit uses cameras, an image can be captured, depending on the configuration.
- The system supports up to two (2) cameras.

2. Open the RECORD MODE window to select how the data is stored, if at all.

- OFF disables the Blind Counter.
- ALL SCALE ACTIVITY records all the weighments.
- NO DATA STORED/TICKET

PRINTED records data if it is not stored on a weighment or a printed ticket.
3. Click the FILE OUTPUT button, and then select YES or NO.

- Sends the weighment data to a specific application folder.

4. Click the COM PORT OUTPUT button, then select YES or NO.
5. Answer YES to send the transaction through one of the Configured Output serial ports.

- These must be configured for this purpose.
- Blind Counter Transaction data will begin with a BLIND COUNTER legend for identification.

6. Click the CLEAR COUNTS button to reset the BLIND COUNTER to zero (0).

- Press the SAVE CHANGES button when any changes are made or they will be lost.

SECTION 7: SUPERVISOR PROGRAMMING

7.1. Introduction

CONFIGURATION HOME is the first menu that appears after the Write Customer Login.

HOME	Returns the operator to the Configuration Home page
AUDIT TRAIL	Identifies how many times and when changes have been made to the scale's Calibration or Configuration settings.
OPERATOR MENU	User access for Time/Date, Ticket Number, Load Cell Diagnostics, and Keyboard Tare entries.
CONFIGURATION MENU	Write Customer access to communications programming and functions, ticket formats, programmable legends and prompts, camera inputs and weight threshold.
RETURN TO WEIGHING	Returns the user to the Weighing Display Screen.

IMPORTANT NOTE: An External Keyboard Accessory (31036 or 25498) is necessary for inputting tares, entering all alphabetic characters, such as editing customers and products.

1.2. Operator Menu

7.2.1. Entering a New Tare Automatically

It is necessary to LOGIN with the Write Customer Password when programing the
TARE functions in the OPERATOR MENU.

1. While in the WEIGH SCREEN, press the MENU button.
2. Select LOGIN.
3. Enter the Write Customer Password.
$\checkmark \quad$ First-time-use default $=1$
4. Press the LOGIN button.
5. Select the OPERATOR MENU.
6. Open the NEW TARE option.
7. Enter the TARE ID numeric value to store and recall a tare weight saved.

- The Tare Weight value is what is currently on the scale.
- This value cannot be edited.

8. Select the correct UNITS value.

A Tare Date generates automatically when the Tare is entered.

The Manual Tare option is not used in this programming menu.
9. Enter the VEHICLE DESCRIPTION.

- This is a unique description or label for the tare weight.

7.2.2. Entering a New Keyboard Tare

1. While in the OPERATOR MENU, open the NEW KEYBOARD TARE option.
2. Using the Keyboard, enter a new TARE ID numeric value to save and recall the tare Weight.
3. Enter the TARE WEIGHT manually using the keyboard.

4. Select the UNITS for the new Tare.

- The Tare Date records the date and time the tare generates automatically.
- The Manual Tare is a flag designating the tare is manually entered.

5. Enter the VEHICLE DESCRIPTION.

- This is a unique description or label for the tare weight, and how it is associated.

7.2.3. Resetting the Ticket Number

Follow these steps to reset the Ticket Number.

1. While in the OPERATOR MENU, select Ticket Number.

2. Set the Machine ID to ONE (1).

- This window also resets the Ticket Number, as needed.
- Press the SAVE CHANGES button, or they will be lost.
- Press BACK: EXIT to return to the previous menu.

7.3. Configuration Menu

These functions add, update and delete all the data input needed for scale system.

7.3.1. Edit Customers

The FB2550 Instrument stores customer's name and address, as well as information used for reporting accumulated weights.

1. While in the CONFIGURATION MENU, press Database Editors.

2. Select EDIT CUSTOMERS.

The first time a customer will be entered, the screen will appear as shown.
3a. Press the NEW CUSTOMER button.
3b. Enter the NEW CUSTOMER information.

OR...

3c. Open the existing customer record which needs editing or updating.

7.3.1. Editing Customers, Continued

3. Enter the unique customer number in the CUSTOMER ID data entry box.

- When selecting a pre-existing Customer, the CUSTOMER ID will generate automatically.
- The customer must be previously created before the truck's data will populate automatically.
- The TOTAL data entry box is automatically populated and updated at every weighment that uses the CUSTOMER ID value.
- This provides a running total of NET WEIGHT for each customer.

4. Select the PRODUCT GROUP from the list.

- The PRODUCTS must first be created before they can apply to the PRODUCT GROUPS.

5. Input any pertinent company information in the ADDRESS ONE thru FOUR (1-4) data
 entry boxes.

- Include the business name, address(es), phone numbers, and point-of-contact names.
- Press the SAVE CHANGES button, or they will be lost.

7.3.2. Edit Products

1. Enter new and edit existing products in EDIT PRODUCTS menu.

- The FB2550 Instrument stores up to 999,999 product and customer files.
- They are used for calculations and
 reporting.

2. While in the CONFIGURATION MENU, select the DATABASE EDITORS button.
3. Select EDIT PRODUCTS.

7.3.2. Edit Products, Continued

3a. Press the NEW PRODUCT button to generate a new one.
3b. Enter the new PRODUCT ID.

- This number is usually from a product inventory list.

OR

3c. Highlight the correct PRODUCT, then press the NEW PRODUCT button to edit an existing product.

OR

3d. Enter the PRODUCT ID in the data entry box.

- Each product entered has an identification value for recalling it in the weighing process.

4. Enter TONS, METRIC TONS, TONNES, or BUSHELS in the Conversion field.
5. Set the Total input field.

- This is an accumulated net weight value.
- Enter a value of an existing amount, such as "1960", "0" as the starting reference.

```
\checkmark ~ T o t a l ~ D e f a u l t ~ = ~ 0 ~ <
```


7.3.2. Edit Products, Continued

6. Enter the FACTOR value in the entry field.

- This value converts the weight to another unit's value.
- The Factor is multiplied by the Net Weight of a transaction.
- To obtain the Factor, divide the conversion value of the unit into ONE (1).

EXAMPLES

$2000 \mathrm{lbs}=1$ ton
Deriving
Factor: $=1 / 2000$
Factor: = . 0005
$56 \mathrm{lb}=1$ bushel of shelled corn

Deriving

Factor: $=1 / 56$
Factor: $=\mathbf{0 . 0 1 7 8 5 7}$
7. Press the UNITS button to select the measurement unit processed and displayed for each Product.
8. Press the DECIMALS button to select the number of places to the right of the decimal for the conversion result.

The Total data entry box is automatically populated and updated upon every weighment which utilizes the Product ID value.

- This provides a running total of Net Weight for each product.
- Manually enter a ZERO to reset the accumulator.

New Product Default = 0

- Press the PAGE FORWARD button.
- Press the SAVE button, or they will be lost.
- Select BACK: EDIT PRODUCTS to return
 to the previous menu.

7.3.2. Edit Products, Continued

9. Select the CONVERSION 2 option if a second one is used by the customer.

- Press the SAVE button, or they will be lost

7.3.3. Edit Product Groups

 A PRODUCT GROUP is a filter to permit only specifically selected products to be used by a customer.- These groups are assigned to a customer from the Edit Customers menu.

WORKING EXAMPLE

A vehicle weighs Inbound on the scale. The scale operator is prompted for Loop ID, Customer ID, and Product ID. When the Product ID is selected, a drop-down menu appears with the products the customer is limited to use.

Product IDs must be created first, before a Product Group is created.

1. While in the WEIGH SCREEN, press the MENU button.
2. Select LOGIN, then enter the Service Password.
3. Press the LOGIN button.
4. Select the CONFIGURATION MENU.

5. Select DATABASE EDITORS.

7.3.3. Edit Product Groups, Continued

6. Select EDIT PRODUCT GROUPS.

7. Assign a GROUP NAME for the new Product Group.

8. Place a check besides the PRODUCT(S) to be included in the group.
9. Press the SAVE button when any changes are made, or they will be lost
 DELETE button to remove the Product Group.

7.3.4. Edit Tares

The EDIT TARES option provides a quick access to all the active stored tares.

1. While in the CONFIGURATION MENU, press the DATABASE EDITORS button.
2. Select EDIT TARES.

номе	BACK: HOME	Configuration Menu
audit trall	Write Customer Password	
operator menu	Write Remote Customer Password	
CONFIGURATION MENU		
return to weighing	Database Editors	
	Reports	
	Programmable Legends	
		Page forward

3a. Press an existing TARE to edit it,
 OR...

3b. Press the NEW TARE button create one,
OR...
3c. Press the KEYBOARD TARE button to add one using the keyboard.

Home	back: database editors Edit Tares
аиסпt tran	Tare 2933
operator menu	Tare 1011
configuration menu	Tare 3333
return to weiching	Tare 9999
	Tare 2933
	Tare 1299

7.3.4. Edit Tares, Continued

4. Enter the TARE ID.

- This is a numeric value entered to store and recall the tare weight saved.

5. Enter the TARE WEIGHT from the scale.

- This value cannot be edited.

6. Enter the UNITS from the available choices.
7. The Tare Date records the date and time the
 tare generates automatically.
8. The Manual Tare is a flag designating the tare is manually entered.
9. Enter the Vehicle Description.

- This is a unique description or label for the tare weight and how it is associated.

10. Press the SAVE button when any changes are made, or they will be lost.

- This exits to the Edit Tares Menu
- Select BACK: OPERATOR MENU to return to the previous menu.

7.3.5. Edit Tags

TAG ID FILES are used only with the FB2550 DAT Instrument, and do not apply to the FB2550 Inbound/Outbound unit.

7.3.6. Deleting Incomplete Transactions

Through the course of normal operation of the FB2550 Instrument, an error may occur. An Incomplete Transaction is then created.
Follow the steps below to remove and delete Incomplete Transactions from the database.

1. While in the CONFIGURATION MENU, select DATABASE EDITORS.
2. Select DELETE INCOMPLETE.

номе	BACK: HOME	Configuration Menu
audit trail	Write Customer Password	
operator menu	Write Remote Customer Password	
Return to weighing	Database Editors	
	Reports	
	Programmable Legends	
		Page forward

3. Select the Incomplete Transaction which is to be deleted by pressing the correct DELETE button.

- Select BACK: DATABASE EDITORS to return to the previous menu.

NOTE: It is recommended to perform the Vacuum Database operation after deleting the transaction records.

7.3.7. Clear Totals

1. In the CONFIGURATION MENU, open the DATABASE EDITORS option.
2. Select the CLEAR TOTALS menu.
3. Click on one of the four options described below.

The CLEAR ALL PRODUCT TOTALS or CLEAR ALL CUSTOMER TOTALS
options completely remove this transaction data.

- Doing this frees the stored memory space, making it available for new transaction data.
- Most often used to update the entire database.
- Because these options affects the entire system, including the REPORTS function, a WARNING message appears.

CLEAR PRODUCT TOTALS or CLEAR CUSTOMER TOTALS removes only one (1) data file per action.

- Resets the accummulator for a single product file.
- No warning displays for this action, as deleting an entry affects only the data associated to it.

HOME	BACK: CONFIGURATION MENU	Database Editors
audit trail	Edit Customers	
operator menu	Edit Product Groups	
Configuration menu	Edit Products	
Return to weiching	Edit Tares	
	Edit Tags	
	Clear Totals	

7.4. Reports

The FB2550 Instrument generates multiple built in reports that vary from Master Lists of customers, products, tares, and operators.

- These includes Transaction Reports and Summary Reports.

1. While in the CONFIGURATION MENU, select REPORTS to access the report list.
2. Select the type of report from the report list.

номе	back: configuration menu	Reports
audit trall	Master File Lists	
operator menu	Transaction Reports	
configuration menu	Summary Reports	
Return to welighing	Email Transaction	
	Calibration Report	
	Manage Report Headers	
	Scale Summary Audit Report	

7.4.1. Master File Reports

The MASTER FILE reports are listings of all the data stored under each category available.

- Customer List
- Product List
- Product Group List
- Stored Tare List

1. Select the correct Report from the MASTER FILE lists.

7.4.1. Master File Reports, Continued

2. Press the ACTION button, then select the correct one.

- Email Report - Export Report

3. Press the FORMAT button, then select the correct one.

- To PDF File
- To CSV Test File
- To HTML File

- Press the CANCEL button at any time to cancel the report operation.
- Press the CONTINUE button to begin the print operation.

Shown above are two examples of Master File Reports.

7.4.2. Transaction Reports

1. While in the CONFIGURATION MENU, press REPORTS to access the report list.

номе	вАСК: Номе	Configuration Menu
audrt trail	Write Customer Password	
operator menu	Write Remote Customer Password	
configuration menu	Blind Counter	
return to weiching	Database Editors	
	 Reports \qquad	
		Page forward

2. Select the TRANSACTION REPORTS

Menu to choose from several reports.

- These process and use the tranation weighment data.

3. Select a TRANSACTION REPORT option from the list below.

- Completed Transactions
- Incomplete Transactions
- Report by Customer
- Scale Activity Summary
- Completed Export
- Report by Product
- Voided Transactions
- Error Report

7.4.2. Transaction Reports, Continued

4. Select from the REPORT OPTIONS MENU for the method of printing the report.
5. Select the correct button In the ACTION window.
6. Select Email Report.
7. Select the correct button In the FORMAT window.

- To PDF
- To CSV
- To HTML File Text File File

8. Press the CONTINUE button to begin the print operation.
9. Press the CANCEL button at any time to cancel the report operation.
10. In the Date Selection Menu, set the START YEAR, MONTH and DAY.
11. Set the END YEAR, MONTH and DAY.

$\checkmark \quad$ Default $=$ CURRENT DATE

- Press the CONTINUE button to begin the print operation.
- Press the CANCEL button at any time to cancel the report operation.
- Select BACK: TRANSACTION

REPORTS to return to the previous menu.

7.4.2. Transaction Reports, Continued

The Completed Transaction Report includes some or all of the following items.

- Date Ranges
- Ticket Numbers
- Times and Dates
- Weight Totals of Transactions

Shown to the right is an example of an Incomplete Report.

- Incoming Weight
- Loop Numbers
- Product IDs
- Customer IDs

The Report by Product groups like products together and provides total weights for each product, which has been processed over the date range entered.

Shown above is an example of a Report by Product.

7.4.2. Transaction Reports, Continued

Like the report above, the Report by Customer will group like customers together and provides total weights for each customer which has been processed over the date range entered.

Shown above is an example of a Voided Transactions.

The Scale Activity Summary, or Blind Counter Report lists the number of weighments which have exceeded the Threshold setting.

- No tickets are produced and the transaction is not stored or saved.

Scale Activity Report
04/20/2011-04/20/2011
Scale Blind Counts
Scale 10
Scale 20
Scale 30
Scale 40
Scale 50
Scale 60
Scale 70
Scale 80
Shown above is an example of a
Scale Activity Report.

7.4.2. Transaction Reports, Continued

The Error Report lists all of the errors which have occurred in the operation of the instrument.

- It details the specifics of each error code and the error parameters.
- The report also details if the error is enabled for reporting. The last occurrence details the time and date the error occurred.

Shown above is an example of an Error Report.

7.4.3. Summary Reports

1. While in the CONFIGURATION MENU, select the SUMMARY REPORTS for a general summary of transaction activities for customers or products.
2. Select whether the Report is BY CUSTOMER or BY PRODUCT.
3. Select from the REPORT OPTIONS MENU for the method of printing the report.

7.4.3. Summary Reports, Continued

4. Select the correct button In the ACTION window.

- Email Report - Export Report

5. Select the correct button In the FORMAT
 window.

- To PDF
- To CSV
- To HTML File Text File File

6. Select the appropriate Date Range for the report.

- The default values will be the current date.

7. Press the CONTINUE button to process the report.
8. Selecting the CANCEL button will abort the process.

- Select BACK: HOME_to return to the Home Menu.

Shown above is an example of a Customer Summary Report.

Shown above is an example of a Product Summary Report.

7.4.4. Email Transaction

The EMAIL TRANSACTION sends an email to a maximum of three (3) recipients, which contains one (1) Transaction Record.

1. While in the CONFIGURATION MENU, press REPORTS.

ноme	BACK: HOME	Configuration Menu
AUDIt TRAIL	Write Customer Password	
operator menu	Write Remote Customer Password	
configuration menu	Blind Counter	
return to weighing	Database Editors	
	Reports بमुना"	
		PAGE FORWARD

2. Select the EMAIL TRANSACTION.

3. Enter the valid TICKET NUMBER to open a Transaction Record.
4. In the Recipient 1, $\mathbf{2}$ and $\mathbf{3}$ fields, enter the correct EMAIL ADDRESSES.

- Press the CANCEL button to abort the process
- Press the CONTINUE button to process the report.
- Select BACK: REPORTS_to return to the Reports Menu.

7.4.5. Scale Summary Audit Report

The Scale Summary Audit Report lists all the transactions individually for each type of weighment.
5. While in the CONFIGURATION MENU, select the SCALE SUMMARY AUDIT REPORT.
6. Select the correct button In the ACTION window.

- Email Report - Export Report

7. Select the correct button In the FORMAT window.

- To PDF File
- To CSV Text File
- To HTML File

A processing message appears.

7.4.5. Scale Summary Audit Report, Continued

Shown below is an example of a Scale Summary Audit Report for one day's weighments.

Scale Summary Audit Report				
	Transactions	Fee \$	Total Amount	Time Stamp
Weigh	102	\$8.00	\$816.00	11:37PM 08/28/2014
Reweigh	4	\$4.00	\$16.00	11:37PM 08/28/2014
Double	5	\$12.00	\$60.00	11:37PM 08/28/2014
Reweigh Double	2	\$6.00	\$12.00	11:37PM 08/28/2014
Triple	0	\$15.00	\$0.00	11:37PM 08/28/2014
Reweigh Triple	0	\$8.00	\$0.00	11:37PM 08/28/2014
No Fee	0	\$0.00	\$0.00	11:37PM 08/28/2014
Total	0		\$904.00	
Blind Counter Scale 1	0			

SEETION 8: INPUT/ OUTPUT

8.1. Printers

The FB2550 instrument has three (3) standard Serial Output Ports which are configured for RS-232 communications.

- Additional serial outputs such as RS-232, 20mA, and RS-485 are available as optional accessories.

NOTE: For solutions, see Section 10.2. Printer Troubleshooting.

8.1.1. Printer Switch Settings

TAPE PRINTER	SW 1 ON	SW 2 ON	SW 3 ON	SWITCH SETTINGS
iDP3550 (SER)	2, 3, 4, 8	1, 2, 3, 5, 6	-	9600 Baud, No Parity, 8 Data and 1 Stop Bit
* TM-U220 (WhITE) (SER)	All OFF	All OFF	-	9600 Baud, No Parity, 8 Data and 1 Stop Bit
TM-U230/U220 (Dk GRay) DAT (SER)	All OFF	2, 5, 8	-	9600 Baud, No Parity, 8 Data and 1 Stop Bit
SP700 (SER)	1 thru 7	1 thru 6	1,5	9600 Baud, No Parity, 8 Data and 1 Stop Bit

REPORT PRINTER	SW 1 ON	SW 2 ON	SW 3 ON	SWITCH SETTINGS
OKI ML420 (USB)	-	-	-	N/A
XEROX 3040 (USB)	-	-	-	N/A

TICKET PRINTER	SW 1 ON	SW 2 ON	SW 3 ON	SWITCH SETTINGS	
TM-U590	(SER)	$\mathbf{1 , 3 , 7}$	All OFF	-	$\mathbf{9 6 0 0}$ Baud, No Parity, $\mathbf{8}$ Data and $\mathbf{1}$ Stop Bit
TM-U295	(SER)	$\mathbf{1 , 3}$	All OFF	-	$\mathbf{9 6 0 0}$ Baud, No Parity, $\mathbf{8}$ Data and $\mathbf{1}$ Stop Bit
SP298	(SER)	All OFF	$\mathbf{3}$	$\mathbf{1 , 5}$	$\mathbf{9 6 0 0}$ Baud, No Parity, $\mathbf{8}$ Data and $\mathbf{1}$ Stop Bit
SP2000	(SER)	All OFF	$\mathbf{3}$	$\mathbf{1 , 5}$	$\mathbf{2 4 0 0}$ Baud, Even Parity, $\mathbf{7}$ Data and $\mathbf{2}$ Stop Bit
SP2200	(SER)	$\mathbf{2 , 3 , 8}$	All OFF	All OFF	$\mathbf{2 4 0 0}$ Baud, No Parity, $\mathbf{7}$ Data and $\mathbf{2}$ Stop Bit
OKI ML420	(SER)	-	-	-	$\mathbf{9 6 0 0}$ Baud, No Parity, $\mathbf{8}$ Data and $\mathbf{1}$ Stop Bit

* Replaces the IDP 3550.

Fairbanks printer default settings are noted in the chart to the right.

- Use USB Cable (29827C), as needed.
- FB2550 Desktop and NEMA 4X use Serial Cable (25932).

BAUD	$\mathbf{9 6 0 0}$
PARITY	None
DATA BITS	$\mathbf{8}$
STOP BIT	$\mathbf{1}$

8.1.2. iDP3550 Tape Printer

BAUD	$\mathbf{9 6 0 0}$
PARITY	No
DATA BITS	$\mathbf{8}$
STOP BIT	$\mathbf{1}$

Cable 25932 Wiring for COM 1-3

DB-9 INSTRUMENT	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
2	RxD	BR	2	TxD
3	TxD	R	3	RxD
4	DRT	O	6	DSR
5	SG	Y	7	SG
6	DSR	G	20	DTR
7	RTS	BL	5	CTS
8	CTS	BK	4	RTS

Cable 25932 Wiring for Serial Expansion Module*

RS232 PORT 1: COM XX	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
TB1a-2	RxD	BR	2	TxD
TB1a-3	TxD	R	3	RxD
TB1a-4	DRT	O	6	DSR
TB1a-5	SG	Y	7	SG
TB1b-6	DSR	G	20	DTR
TB1b-7	RTS	BL	5	CTS
TB1b-8	CTS	BK	4	RTS

* Must remove the 9-pin connector.

8.1.3. TM-U220 Tape Printer

The TM-U220 Tape Printer is the primary default printer for standard configurations with the FB2550 Instrument.

- It uses SERIAL communication.
- Necessary cable used is 25932.

BAUD	$\mathbf{9 6 0 0}$
PARITY	No
DATA BITS	$\mathbf{8}$
STOP BIT	$\mathbf{1}$

WIRING

Cable 25932 Wiring for COM 1-3

DB-9 INSTRUMENT	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
2	RxD	BR	2	TxD
3	TxD	R	3	RxD
4	DRT	O	6	DSR
5	SG	Y	7	SG
6	DSR	G	20	DTR
7	RTS	BL	5	CTS
8	CTS	BK	4	RTS

Cable 25932 Wiring for Serial Expansion Module*

RS232 PORT 1: COM7 XX	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
TB1a-2	RxD	BR	2	TxD
TB1a-3	TxD	R	3	RxD
TB1a-4	DRT	O	6	DSR
TB1a-5	SG	Y	7	SG
TB1b-6	DSR	G	20	DTR
TB1b-7	RTS	BL	5	CTS
TB1b-8	CTS	BK	4	RTS

* Must remove the 9-pin connector.

8.1.3. TM-U220 Tape Printer s, Continued DIP SWITCH 1 (Serial Interface)

SWITCH	FUNCTION	ON	
1	Data receive error	Ignored	Prints "?"
2	Receive buffer capacity	40 byes	4KB
3	Handshaking	XON/XOFF	DTR/DSR
4	Work length	7 bits	8 bits
5	Parity check	Yes	No
6	Parity selection	Even	Odd
7	Transmission speed	4800 bps	9600 bps
8	BUSY condition	Receive buffer full	Receive buffer full or Offline

DIP SWITCH 2 (Serial Interface)

SWITCH	FUNCTION	ON	OFF
1	Print Column	$42 / 35$	$40 / 33$
2	For internal use only (auto-cutter) (do not change)	Enabled	Disabled
3	Pin 6 reset signal	Used	Not used
4	Pin 25 reset signal	Used	Not used
5	Undefined	--	--
6	Internal use only (flash memory rewriting) (Do not change)	Enabled	Disabled
7	Undefined	--	--
8	Serial Interface section	Memory Switch	Dip Switch

Access the Dip Switches by unfastening the screw and removing the cover plate, found on the bottom of the printer.

For standard use, dip switches are factory-set correctly. DSW2-2 is the only one ON.

8.1.4. SP700 Tape Printer

1. For FB2550 Instrument communications, use cable 25932.

BAUD	$\mathbf{9 6 0 0}$
PARITY	No
DATA BITS	$\mathbf{8}$
STOP BIT	1

There are two (2) dip switch locations on the Star SP700 Printer.

- Underneath the printer, behind a protective cover is DIP SWITCH 1.
- DIP SWITCH 2 is on the Serial Inteface Board.

DIP Switch 1

SWITCH	FUNCTION	ON	
$1-1$	Always ON	OFF	
$1-2$	Auto Cutter *	Should be set ON	
$1-3$	Always ON	Should be set ON	
$1-4$	Command Emulation	Star	
$1-5$	USB mode ${ }^{* *}$	ESC/POS	
$1-6$	2 Colors Printing	Vrinter Class	
Vendor Class			
$1-7$	Reserved	Invalid	
$1-8$	Print head model ***	18-pin wire	9-pin wire

* The factory settings for enabling/disabling the Auto Cutter are as listed below.
- Models without Auto Cutter: Invalid (Switch 1-2 = ON).
- Models with Auto Cutter: Valid (Switch 1-2 = OFF)

NOTE: Do not enable the AUTO CUTTER for models without this feature.
A mechanical error will occur.
** USB Interface model only.
*** Do not change the default setting (Switch 1-8 = OFF).

8.1.4. SP700 Tape Printer, Continued

DIP Switch 2

SWITCH	FUNCTION	ON	OFF
$2-1$	Baud Rate	See table below.	
$2-2$	Data Length	$\mathbf{8}$ bits	7 bits
$2-3$	Parity Check	Disabled	Enabled
$2-4$	Parity	Odd	Even
$2-5$	Handshake	DTR/DSR	XON/XOFF
$2-6$	Pin \#6 (DSR) reset signal	Valid	Invalid
$2-7$	Pin \#25 (INIT) reset signal	Valid	Invalid
$2-8$			

Baud Rate Settings Table

BAUD RATE	SWITCH 2-1	SWITCH 2-2
4800 bps	OFF	ON
9600 bps	ON	ON
1920 bps	ON	OFF
3840 bps	OFF	OFF

8.1.5. OKI ML420 Report Printer

- For FB2550 Instrument communications, use cable 25932 or 14807.
- For USB input, use cable 29827C.

CABLE 26041 WIRING for Serial Expansion Module *

RS232 Port 1: COM XX	RS232 Port 2: COM XX	RS232 Port 3: COM XX	Description	DB-25 Printer
TB1a-3	TB1b-5	TB1d-2	Transmit (Tx)	3
TB1a-2	TB1c-1	TB1d-3	Receive (Rx)	2
TB1a-5	TB1c-2	TB1d-4	Ground (GND)	7

- All printer settings apply to both the Serial and USB models.

Cable 25932 Wiring for Serial Expansion Module*

RS232 PORT 1: COM7 XX	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
TB1a-2	RxD	BR	2	TxD
TB1a-3	TxD	R	3	RxD
TB1a-4	DRT	O	6	DSR
TB1a-5	SG	Y	7	SG
TB1b-6	DSR	G	20	DTR
TB1b-7	RTS	BL	5	CTS
TB1b-8	CTS	BK	4	RTS

* Must remove the 9-pin connector.

NOTE: The Okidata ML420 is used as both a Report Printer and a Ticket Printer. - As a USB Printer, there is no need to adjust the Switch Settings.

8.1.5. OKI ML420 Report Printer, Continued

Follow these steps to change MENU settings on the Printer.

1. To enter MENU MODE, press and hold the SHIFT key while pressing the SELECT key.

- The "MENU" legend will be illuminated.

2. With the printer in the MENU MODE, press the PRINT key

- This prints all the programming options in the MENU MODE, as well as the current default settings.
- It is recommended to use tractor fed paper.
- The printed menu selections are different for each Emulation Mode.

3. Press the GROUP key to select the relevant Group that needs to be changed.
4. Press the ITEM key to select the relevant Item within the selected group.
5. Press the SET key to cycle through all the Settings available
6. Press and hold the SHIFT + SELECT keys to exit the MENU MODE.

NOTE: Turning off the printer before exiting the MENU MODE will lose any changes made.

PRINTER SETTINGS

GROUP (Press LiNE FEED to change)	ITEM (Press FORM FEED to change)	SET (Press TOF SET to change)
Printer Control	Emulation Mode	IBM PPR

8.1.5. OKI ML420 Report Printer, Continued

GROUP (Press LINE FEED to change)	ITEM (Press FORM FEED to change)	SET (Press TOF SET to change)
Printer Control	Emulation Mode	IBM PPR
Rear Feed	Line Spacing	6 LPI
Rear Feed	Form Tear-off	Off
Rear Feed	Skip Over Perforation	No
Rear Feed	Page Length	11"
Bottom Feed	Line Spacing	6 LPI
Bottom Feed	Form Tear-off	Off
Bottom Feed	Skip Over Perforation	No
Bottom Feed	Page Length	11"
Top Feed	Line Spacing	6 LPI
Top Feed	Form Tear-off	Off
Top Feed	Skip Over Perforation	No
Top Feed	Page Length	11"
Set-Up	Graphics	Bi-directional
Set-Up	Receive Buffer Size	64K
Set-Up	Paper Out Override	No
Set-Up	Print Registration	0
Set-Up	Operator Panel Function	Full Operation
Set-Up	Reset Inhibit	No
Set-Up	Print Suppress Effective	Yes
Set-Up	Auto LF	No
Set-Up	Auto Select	No
Set-Up	SI Select Pitch (10CP)	17.1 CPI
Set-Up	SI Select Pitch (12CPI)	12 CPI
Set-Up	Time Out Print	Valid
Set-Up	Auto Select	No
Set-Up	Centering Position	DEFAULT
Set-Up	ESC SI Pitch	17.1 CPI
Set-Up	Power Saving	Disable
Set-Up	Power Save Time	5 Min
Parallel I/F	I-Prime	Buffer Print
Parallel I/F	Pin 18	+5v
Parallel I/F	Bi-Direction	Enable

8.1.5. OKI ML420 Report Printer, Continued

GROUP (Press LINE FEED to change)	ITEM (Press FORM FEED to change)	SET (Press TOF SET to change)
Printer Control	Emulation Mode	IBM PPR
Serial I/F	Parity	None
Serial I/F	Serial Data 7/8 Bits	8 Bits
Serial I/F	Protocol	X-On/X-Off
Serial I/F	Diagnostic Test	No
Serial I/F	Busy Line	SSD-
Serial I/F	Baud Rate	9600 BPS
Serial I/F	DSR Signal	Invalid
Serial I/F	DTR Signal	Ready on Pwr up
Serial I/F	Busy Time	200 ms

8.1.6. XEROX ${ }^{\circledR}$ Phaser 3040 Report Printer

The XEROX ${ }^{\circledR}$ Phaser 3040 is a USB only Report Printer.

- Plug-and-play device.
- Use USB Cable (29827C).

PRINTER SPECIFICATIONS

Print Speed	Up to 24 ppm
Resolution	- $600 \times 600 \mathrm{dpi}$ - $1200 \times 1200 \mathrm{dpi}$
Paper Capacity	- 150-sheet main tray - 100-sheet output tray
Maximum Print Size	8.5×14 in.
Connectivity	USB 2.0
Dimensions	22"(w) x 32.6"(d) x 15.1"(h)
Optimum Temperature	$50-90^{\circ} \mathrm{F}$
Optimum Humidity Range *	15-85\%
Power Supply Voltage and Frequency	- 110-127 VAC; $50 / 60 \mathrm{~Hz}(+/-3 \mathrm{~Hz})$ - 220-240 VAC, $50 / 60 \mathrm{~Hz}$ (+/- 3 Hz)
Printer Warm-up Time	- Power on in 25 seconds or less. - Recovery from Sleep Mode in $\mathbf{2 5}$ seconds or less.
Processor	150 MHz 4305 Processor
Memory	64MB Standard Memory

* Defects can occur due to condensation.

8.1.6. XEROX ${ }^{\circledR} 3040$ Report Printer, Continued

LOADING PAPER IN THE MAIN TRAY

1. Open the front cover.
2. Pull the slide bar forward until it stops.
3. Pull the length guide forward until it stops.
4. Move the width guides to the edges of the tray.

5. Flex the paper sheets back and forth and fan them, then align the edges of the stack on a level surface.

- Doing this reduces the possibility of jams.

6. Load the paper into the tray, top edge toward the printer and the print side up.
7. Adjust the width guides until they touch the edges of the paper.
8. Push in the length guides and slide bar until they stop.
9. Place the paper cover on the main tray and align the tabs with the marks on the tray.

TONER/PAPER OUT WARNINGS

It is time to order supplies when the printer Control Panel displays a message.

- To avoid interruptions of printing, order replacement supplies when the messages first appears as a warning.
- When the toner cartridge needs replacing, the control panel Instruments light up and display a message.

8.1.7. TM-U590 Ticket Printer

- For FB2550 Instrument communications, use cable 25932.

BAUD	$\mathbf{9 6 0 0}$
PARITY	No
DATA BITS	$\mathbf{8}$
STOP BIT	$\mathbf{1}$

Set the printer dip switches as listed below.
DSW 1: 1, 3, and $7=$ ON only.
DSW 2: All Switches = OFF

Cable 25932 Wiring for COM 1-3

DB-9 INSTRUMENT	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
2	RxD	BR	2	TxD
3	TxD	R	3	RxD
4	DRT	O	6	DSR
5	SG	Y	7	SG
6	DSR	G	20	DTR
7	RTS	BL	5	CTS
8	CTS	BK	4	RTS

Cable 25932 Wiring for Serial Expansion Module*

RS232 PORT 1: COM7 XX	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
TB1a-2	RxD	BR	2	TxD
TB1a-3	TxD	R	3	RxD
TB1a-4	DRT	O	6	DSR
TB1a-5	SG	Y	7	SG
TB1b-6	DSR	G	20	DTR
TB1b-7	RTS	BL	5	CTS
TB1b-8	CTS	BK	4	RTS

* Must remove the 9-pin connector.

8.1.8. TM-U295 Ticket Printer

- For FB2550 Instrument communications, use cable 25932.

BAUD	$\mathbf{9 6 0 0}$
PARITY	No
DATA BITS	$\mathbf{8}$
STOP BIT	$\mathbf{1}$

Set the printer dip switches as listed below.

- SW1: 1 and 3 = ON
- Remainder = OFF

Cable 25932 Wiring for COM 1-3

DB-9 INSTRUMENT	DESCRIPTION	WIRE COLOR	DB-25 PRINTER	DESCRIPTION
2	RxD	BR	2	TxD
3	TxD	R	3	RxD
4	DRT	O	6	DSR
5	SG	Y	7	SG
6	DSR	G	20	DTR
7	RTS	BL	5	CTS
8	CTS	BK	4	RTS

Cable 25932 Wiring for Serial Expansion Module*
$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { RS232 } \\ \text { PORT 1: COM7 XX }\end{array} & \text { DESCRIPTION } & \begin{array}{c}\text { WIRE } \\ \text { COLOR }\end{array} & \begin{array}{c}\text { DB-25 } \\ \text { PRINTER }\end{array} & \text { DESCRIPTION }\end{array} \begin{array}{l}\text { * } \\ \text { Must } \\ \text { Memov } \\ \text { ente } \\ \text { ene }\end{array}\right)$

8.1.9. SP298 Ticket Printer

- For FB2550 Instrument communications, use cable 25932.

ACCESSING THE DIP SWITCHES

BAUD	$\mathbf{9 6 0 0}$
PARITY	No
DATA BITS	$\mathbf{8}$
STOP BIT	$\mathbf{1}$

1. Remove all power from the printer, as well as all Network cables from between the printer and the Instrument.
2. Remove the PRINTER COVER.
3. Press down with a screwdriver at LOCATION "A" marked in the illustration below, and carefully slide the Document Table in the direction indicated by the arrow until it is out of the way.

- It is not necessary to remove the document table completely. Just move it enough to access the DIP Switches inside.

4. Set the DIP SWITCHES into their correct positions.
5. Slide the Document Table back into place while pressing down at LOCATION " A ".
6. Replace the PRINT COVER.

8.1.9. SP298 Ticket Printer, Continued

DIP Switch Settings (SERIAL INTERFACE)

SWITCH	FUNCTION	ON	OFF
1	Baud Rate	See table below.	
2			
3	Data Length	8 bits	7 bits
4	Parity Check	Disabled	Enabled
5	Parity	Odd	Even
6	Handshake	DTR/DSR	XON/XOFF
7	Command Emulation	See table below	
8			
9	Pin \#6 (DSR) reset signal	Enabled	Disabled
10	Pin \#25 (INIT) reset signal	Enabled	Disabled

Baud Rate Settings Table

BAUD RATE	SWITCH 1	SWITCH 2-2
4800 bps	OFF	ON
9600 bps	ON	ON
1920 bps	ON	OFF
3840 bps	OFF	OFF

Command Emulation Table

COMMAND EMULATION	SWITCH 7	SWITCH 8
Star Mode	ON	ON
ESC/POS (TM-295)	ON	OFF
ESC/POS (TM-290)	OFF	OFF
Not used (*)	OFF	ON

* Never set Switch 7 to OFF at the same time that Switch $\mathbf{8}$ is set to ON.

8.1.10.SP2000 Ticket Printer

The SP2000 is a Dot Matrix ticket printer. The following switch settings and cable requirements will work with the default format.

- For FB2550 Instrument communications, use cable 25932.

Noted below are the dip switch and default settings.

- DSW 1: All OFF.
- DSW 2: Three (3) ON only.
- DSW 3: One (1), and five (5) ON only.

BAUD	$\mathbf{2 4 0 0}$
PARITY	EVEN
DATA BITS	$\mathbf{7}$
STOP BIT	$\mathbf{1}$

8.1.11.SP2200 Ticket Printer

The SP2200 is a Dot Matrix ticket printer. The following switch settings and cable requirements will work with the default format.

- For FB2550 Instrument communications, use cable 25932.

STANDARD TICKET CONFIGURATIONS

Noted below are the dip switch and default settings.

- DSW 1:

Two (2), three (3), and eight (8) ON only.

- DSW 2 and 3: All OFF.

BAUD	$\mathbf{2 4 0 0}$
PARITY	NO
DATA BITS	$\mathbf{7}$
STOP BIT	$\mathbf{2}$

INVERTED TICKET CONFIGURATIONS

To invert the print on an SP2200, switch settings are different, and must be changed.

- The printer does not invert using the software command, like with some other printers.

Set the printer's dip switches DSW 1 four (4), five (5) and six (6) according this chart.

Normal Print	Off	Off	Off
Inverted	Off	Off	ON
$2 x$ Width	Off	ON	Off
$2 x$ Height	Off	ON	ON
$2 x$ Height Inverted	ON	Off	Off
$2 x$ Width Inverted	ON	Off	ON
$2 x$ Width and 2x Height	ON	ON	Off
$2 x$ Width and 2x Height Inverted	ON	ON	ON

8.1.12.Programming the Printers

The two printer interface types on the FB2550 are USB and Serial.
Serial Printers must be configured manually.

- Dip switches must be set up correctly or they will not transmit and print the data.
- Print drivers are sometimes needed to set up communications.

USB Printers are considered "plug-and-play", as the parameter defaults are automatically programmed.

- There are no dip switches or drivers needed for these printers.

IMPORTANT NOTE: For SERIAL PRINTERS, do not plug the printer into the Instrument if either is powered-up and running. This can damage the I/O Board.

8.1.13.Serial Printer Programming

Follow these steps to configure the Serial Printer connected to the FB2550 Instrument.

1. Plug the printer into one of the Instrument's Serial Ports.
2. Turn on both components.
3. Press the MENU Button.
4. Press LOGIN, then enter the Write Customer or Service Password.
5. Press the LOGIN button.
6. Open the Configuration Menu.
7. PAGE FORWARD twice.
8. Select PRINTER SPOOLER.
9. Select SERIAL PRINTERS.
10. Select the correct COM PORT for the printer.

8.1.13. Serial Printer Programming, Continued

11. Open the PRINTER option, then select the correct printer.

CONNECTION TYPE	PRINTER	
USB Only	• Xerox Phaser 3040	
	• ML420	• HP P2055D
Serial	• iDP3550	• TM-U590
	- TM-U295	• SP298
	• SP700	• SP-2000
	- SP-2200	• TM-U230
	• ML420	• EU-T432

12. Program the parameters for the COM Port to the default printer as noted below.

BAUD RATE	$\mathbf{9 6 0 0}$
PARITY	None
DATA BIT(S)	$\mathbf{8}$
STOP BIT(S)	$\mathbf{1}$

13. If this is the first time the printer is installed on the Instrument, load the PRINTER DEFAULT FORMATS by pressing the YES button.

8.1.14.USB Printer Programming

USB Printers are considered "plug-and-play" which means with the FB2550 Instrument is loaded with the standard drivers. There is no need to adjust the communication parameters or dip-switches.
Follow these steps to install a USB Printer.

1. Plug the printer into the Instrument's USB Port.
2. Turn on the switch.

NOTE: USB Printers are typically used for reporting.
3. While in the CONFIGURATION MENU, press PAGE FORWARD twice.
4. Select PRINTER SPOOLER.

5. Select USB PRINTERS.

8.1.14. USB Printer Programming, Continued

6. Select the correct Printer from the list.

7. If this is the first time installation to this Instrument, load the PRINTER DEFAULT FORMATS by pressing the CONTINUE button.

- A notice window will appear, stating that the process was positive.
- Press the SAVE CHANGES button.

8.2. Format Tickets

Follow these steps to format the tickets for the printers.

NOTE: For additional information, see Appendix III: Ticket Data Fields.

1. While in the CONFIGURATION MENU, press PAGE FORWARD.
2. Select FORMAT TICKETS.

3. Select the correct printer.

4. Press the FORMAT button.
5. Select the ticket format to edit or configure.

8.2. Format Tickets, Continued

7. Press the FORMAT button to access the format item menu.
8. The FORMAT TICKETS menu has nineteen (19) windows of configurable data windows for each printers ticket format.

TICKET LENGTH and TICKET WIDTH configures its size.

EASY FORMAT WT FLDS combines the Weight, Unit of measure, and Legend data fields, so they automatically group together as
 one field on the ticket.

- Using this option saves the time of manually moving these three data fields individually, and then configuring their placement on the ticket.
\checkmark Default = YES

INVERTED feature prints the ticket from the bottom first, up to the top.

9. Press the PAGE FORWARD button to advance to the next page of ticket options.
10. Press the SAVE CHANGES button, or they will be lost.
11. Press the COPY button to save this ticket format, then posts it to another printer's selected ticket format.

NOTE: Formatting all the parameter windows will determine how the ticket prints.

8.2. Format Tickets, Continued

The DELETE button function eliminates the ticket format.

- A prompt appears to confirm the operation.

Described below are the three different types of FIELD: identifiers within the FORMAT TICKET windows.

DATA FIELD -Data which is emphasized within greater than and less than symbols is derived from the FB2550 and the vehicle which is being weighed.

Example: <Gross WT>

- This is the actual weight value which was weighed on the scale.

LABEL FIELD - Data which is text only, and describes the data field that it is beside.

Example: GROSS LABEL

- This label describes the label as a GROSS weight value.

TEXT FIELD - Custom text entered to provide required information on the ticket.

Example:

Driver: \qquad

- This gives driver a place to sign a ticket.

8.2. Format Tickets, Continued

TOP / LEFT: Plots the $\mathrm{x}-\mathrm{y}$ coordinates of where the fields are located.

- TOP field moves the data field in an up and down position.
- This value is incremented in tenths (0.1) of an inch.
- LEFT field moves the data field in a left to right direction.
- This value is incremented in tenths (0.1) of an inch.
- In the ENHANCED FIELD, select YES to enable emphasized print, or NO to disable it.
- In the PRINTED field, select YES to enable printing the data item, or NO to disable it.

- Press the SAVE CHANGES button, or they will be lost.
- Selecting BACK: FORMAT TICKET returns to the previous menu.

8.3. Web Ticket Layout

8.3.1. Overview

Web Ticket Layout configures the fields on a scale ticket in a WYSIWYG format (What You See Is What You Get).

- This allows a user to create and modify ticket layouts by drag-and-drop fields from a list onto the ticket.
- The printed ticket will look like what is laid-out on the web page.
- This is only accessible using a computer web browser, and not available on the screen of the instrument.
- The original ticket format capability still remains available using a web browser or directly on the instrument.

8.3.2. Programming a Web Ticket

Follow these steps to Program a Web Ticket.
12. Enter the IP ADDRESS of the target FB2550 Instrument into a Networked computer's web browser Address Field.

- Do NOT select SHOW AS LOCAL for the web-based applications.

13. Input the Remote Service Password.
14. Press ENTER.

15. In the FB2550 Instrument window, select LOGIN .

8.3.2. Programming a Web Ticket, Continued

18. Click the WEB TICKET LAYOUT button.

- Opening this loads (or create) the parameters for this specified ticket.

The three sections of the Web Ticket Programming are listed below.
A. General Layout Options are settings that apply to the entire ticket, or that control significant behavior of the printed ticket layout.
B. Fields list contains an alphabetical list of available fields that can be printed on a ticket.

- Each field can be dragged-anddropped into place.
C. Ticket Layout field is a visual representation of the scale ticket.
- Each Fields option can be dragged-and-dropped into place.

This image displays the ticket format setup of a Citizen iDP3550 Printer.

- The ticket size is 3.5 " $\times 3$ ".
- Pressing the COPY button saves this ticket to RAM memory to format a similar ticket.
- Highlight a Field, then press DELETE to remove it.
- Press the SAVE CHANGES button.

8.3.2. Programming a Web Ticket, Continued

A. GENERAL LAYOUT OPTIONS

GENERAL LAYOUT OPTIONS are settings that apply to the entire ticket, or that control significant behavior of the ticket printing or layout.

- Not all options are available for all printers, and ones which don't apply are disabled.
- Size sets the dimensions of the data field boxes (in inches).
- If the field box is set smaller than the text size, it enlarges to fit.
- For serial printers, the print size cannot be changed.
- Once changed, click out of the field and the layout will update.
- Margins places the location of the data field box on the ticket.
- Data field boxes are placed on the ticket according to the TOP, BOTTOM, LEFT and RIGHT page coordfinates in inches.
- A light dashed line represents the margins.
- These values are rounded to the nearest tenth of an inch ($1 / 10$ ").
- Easy Format Weight Fields is not recommended when using the Web Ticket Layout.
- Inverted prints the ticket inverted.
- This option may not be available on all printers.

NOTE: For serial printers, the margin values are disabled and set to ZERO.

SECTION 8: INPUT/ OUTPUT

8.3.2. Programming a Web Ticket, Continued

B. FIELDS LIST

The field list contains an alphabetical list of available fields to be printed on a ticket.

- Each field can be dragged onto the Ticket Layout area and dropped in place.
- Only fields in the Ticket Layout are printed.
- Once on the ticket, a Field can be removed from the ticket by dragging it back to the Field List and dropping it.
- The Field will be placed back in its original order.
- While in the Ticket Layout area, the Fields can be formatted by double-clicking on it.

C. TICKET LAYOUT

The TICKET LAYOUT area is a visual representation of the scale ticket.

- Printable fields can be dragged from the field list and dropped on to the ticket layout.
- Fields already on the ticket can also be dragged to different positions on the ticket.

This image displays the axle weighing format setup of a Epson TM-U590 Report Printer.
Drag-and-drop any option from the Fields list (B) onto the Ticket Layout frame (C).
This is a WYSIWYG ("What You See Is What You Get") programming application.

- The fields are displayed with any formatting, and the text is the field caption.
- If there is no caption, the Field Name is used.

Field Positions are saved (on submit), and are printed in that position.
Field Sizes for serial printers adjust automatically to fit the text size, and cannot be changed
Only fields in the TICKET LAYOUT area are printed.

- To remove a field, drag it back to the Field List.
- The Ticket Layout area is close to the actual physical size to the ticket.
- It may not be exactly.
- The size and position of the fields are proportional to the size of the ticket.
- The dashed line represents the printer margins set in the General Layout Options.
- All fields in the Ticket Layout adjust automatically to fit the text.
- The field can be made larger if desired, but not smaller than the given text.
- Placement of the fields will snap to the nearest tenth of an inch.
- When dragging a field less than this distance, the field returns to its original position.

D. SCALE SUMMING FORMAT

This example displays the SCALE SUMMING format.

- Tickets can be formatted to print all platform weights, as well as the calculated total.
- Use the TEXT FIELDS in the print format settings print the individual platform weights.
- Use TEXT FIELDS 1, 2 and $\mathbf{3}$ for the STEERING, DRIVE and TRAILER platforms.
- The total of the weighments will be the GROSS WEIGHT field.

This shows the basic elements of the SCALE SUMMING format.

8.3.2. Programming a Web Ticket, Continued

E. FORMAT OPTION

The FORMAT window is an advanced view of the WEB TICKET LAYOUT.

1. After formatting the ticket, press the TEST PRINT button. Study the ticket to confirm that it is formatted correctly.
2. Press the FORMAT button to move, remove or add an element on the ticket.

- Press the BACK: FORMAT TICKETS button to return to the previous menu.
- Doing this does not save any changes.
- Press the COPY button to save these ticket formatting parameters into RAM memory for another similar ticket.
- Press DELETE to remove the ticket completely.
- Press the SAVE CHANGES button, or they will be lost.
- The top frame of this window gives the same formatting options of the Web Ticket Layout.
- The bottom frame lists all of the formatting options, the input field coordinates (in inches), and any associated link.
- Any field(s) already placed on the ticket structure is highlighted in dark gray.

3. Double-click on any of the formatting options to add this field onto the Ticket.

- Once selected, the top frame displays all of the choices from this fomatting option, according to its parameter needs.

8.4. Serial Card

The SERIAL CARD (30921) provides four (4) outputs with a maximum of two (2) cards per Instrument. See the Port Assignments listed below.

- A bus cable is provided, connecting the Multi-function Board to the Expansion Card.

PORT 1	RS-232 (Full Duplex 9 Pin Port)
PORT 2	RS-232 OR 20mA *
PORT 3	RS-232 OR RS-422 *
PORT 4	RS-485

* Only one (1) may be selected at a time, and not both.

8.5. Serial 20 mA Interfaces

Described below are the two Serial 20mA Interfaces typically used for a Remote Display.

- A FB2550 Instrument can use only one of these two interfaces.

SERIAL 20mA MULTI-FUNCTION BOARD (29970)

Communicates with the Remote Display

- One-way output only.
- An ACTIVE 18VDC POWER SUPPLY SETUP is recommended.
- The Remote Display is configured for the 20mA Interface.

SERIAL 20mA EXPANSION BOARD

Provides additional COM Ports for the Instrument.

- Supplies Serial 20mA, RS-232 or RS-485 Output.
- An ACTIVE 18VDC POWER SUPPLY SETUP is recommended.

8.5.1. Multi-Function Board

Below are images showing the Multi-function Board connections.

- Use a 20 mA CURRENT LOOP CONNECTION for the Remote Display.

8.5.1. Multi-Function Board, Continued

These following steps to configure the FB2550 for use with the serial 20 mA to a remote display.
4. While in the CONFIGURATION MENU, press PAGE FORWARD.
5. Select REMOTE DISPLAY.

номе	BACK: Home	Configuration Menu
ajott tran	Programmable Prompts	
OPERATOR MENU	Entry Sequence Prompts	
configuration menu	Format Tickets	
return to weighind		
	Configure Outputs	
	Loopback Test	
	Vehicle Image Type	
	page back	page forward

Select from the following options as appropriate for the application. Format the communication settings according to the default parameters on the right.

APPLICATION SETTINGS

COM Port	OFF, COM1 - COM4, COM25 - 28*, COM25 - 32*
Display Mode	Continuous Display, Display on Print
Output Type	Gross Wt, Net Wt, Ticket Number
Output Scales	Active Scales, Scale 1 thru 8, All Scales

PARAMETERS	
Baud	$\mathbf{2 4 0 0}$
Parity	None
Data Bits	$\mathbf{8}$
Stop Bits	$\mathbf{1}$

* Dependent upon number of Serial Expansion Cards.

8.5.1. Multi-Function Board, Continued

6. Press PAGE FORWARD once.
7. Check the Enabled 1605T Remote Display Traffic Light Control if this accessory is installed.
8. Turn ON the 20 mA Output option when using the Multi-Function Board.

- This allows 20mA Output, located at J1 on the Multi-Function Board.

9. Configure the $\mathbf{2 0 m A}$ Output to these recommended settings.

BAUD RATE	$\mathbf{2 4 0 0}$
PARITY	odd
DATA BIT(S)	$\mathbf{7}$
STOP BIT(S)	$\mathbf{1}$

8.5.2. Serial Expansion Board

10. While in the CONFIGURATION MENU. press PAGE FORWARD once.
11. Select Remote Display.

Select from the following options as appropriate for the application. Format the communication settings according to the default parameters on the right.

APPLICATION SETTINGS	
COM Port	OFF, COM1 - COM4, COM25 - 32 *
Display Mode	Continuous Display, Display on Print
Output Type	Gross Wt, Net Wt, Ticket Number
Output Scales	Active Scales, Scale 1 thru 8, All Scales

PARAMETERS	
Baud	$\mathbf{2 4 0 0}$
Parity	None
Data Bits	$\mathbf{8}$
Stop Bits	$\mathbf{1}$

* The number of available COM Ports depends upon the Expansion Card used.

12. Check the Enabled 1605T Remote Display Traffic Light Control if this accessory is installed.
13. When using the Serial Expansion Board, leave the 20 mA Output turned OFF.

- This turns on the 20mA output, located at J1 on the Multi-Function Board.
- This is not required for this Configuration
 Setup.

8.6. Configure Outputs

This menu configures data string protocols, configuration parameters, and output modes such as Continuous, Demand, Auto, Network (Continuous), and Network (Auto).

8.6.1. Configuring an Output Data String

In order to interface an FB2550 Instrument to software or a pre-existing peripheral device, such as a remote display, knowing their specific Data Output String is mandatory.

- This allows the software or peripheral device to communicate with the FB2550 for weight data.
- When adding to other manufacturer's devices, refer to their Service Manuals for Data Output String information.
- Interfacing with other manufacturer's software, refer to either a web site, Service Manual, or contact the manufacturer directly for the Data Output String information.

8.6.2. Two Methods of Formatting

Noted below are the two methods to format an Data Output String.
A. Preconfigured Output

- This method uses one of the seven (7) Preconfigured Outputs in the LOAD menu.
B. Customizing the Data Output Strings
- This method uses a Preconfigured Output from the LOAD menu as a base format. Then the message in the Data Output String is customized in the BUILD menu to match the customer's specific configuration requirements.

8.6.3. Method 1 - Preconfigured Output

Follow these steps to configure an Data Output String on the FB2550, completed in the Configuration Menu.

1. While in the WEIGH SCREEN, press the MENU button.
2. Select LOGIN.
3. Enter the Write Customer Password or Service Password.
4. Press the LOGIN button.
5. Select the CONFIGURATION MENU, and then press PAGE FORWARD once.
6. Select CONFIGURE OUTPUTS.
7. Select CONFIGURE COM \mathbf{X}, where \mathbf{X} is the desired COM port location

- CONFIGURE COM1 is used as an example for the following images.

номе	BACK: номе	Configuration Menu
audit tran	Programmable Prompts	
operator menu	Entry Sequence Prompts	
Configuration menu ${ }^{\text {c\|l\|l }}$ Format Tickets	Format Tickets	
Return to weighing		
	Configure Outputs	
	Vehicle Image Type	
	page back	page forward

8. Press the LOAD button.

9. Select the correct Load format.

- When configuring an data output string, the FB2550 has seven (7) commonly used preconfigured outputs.
- CONFIGURE COM1 was selected in Step 8 for the following data string build example.

- See Appendix II: Data Output for further information.

8.6.3. Method 1 - Preconfigured Output, Continued

10. Press the YES button to load the default configuration for the data protocol selected.

For a few seconds, a similar message to this verifies a successful load.
11. Verify the CONFIGURATION BAUD, PARITY, STOP BITS to be at the correct values.
12. Enter the MODE menu to configure the data transmission method.

OFF - COM port is disabled.
CONTINUOUS - The COM port transmits the data string continuously per every display update.
DEMAND - The data string is transmitted upon receiving the programmed poll character from a peripheral device.

AUTO - The data string is transmitted upon the printing of a transaction.
NETWORK (CONTINUOUS) - The data string is transmitted continuously per every display update through the network connection.
NETWORK (AUTO) - The data string is transmitted upon pressing print and the printing of a transaction will transmit the transaction through the network connection.

8.6.3. Method 1 - Preconfigured Output, Continued

13. Open the BAUD/PARITY menu and select the correct Baud Rate.
14. Select the required PARITY rate from the menu list.
15. Open the DATA BIT menu and select the correct setting.
16. Open the STOP BIT option and select the correct setting from the menu list.

CHECKSUM option verifies the data sent and received is free from corruption when Networking.

DELIMITED option separates elements within the data string with commas, line feeds, etc.

INCLUDE LEGENDS option turns on and off the Unit Legends sent within the data string, such as LB, KG GROSS, TARE, etc.

- Not used for the display functions.

17. Press the SAVE CHANGES button, or they will be lost.

8.6.4. Method 2 - Customizing Data Output Strings

The FB2550 Instrument can be customized to support different manufacturer's software interfaces to peripheral devices.

- When the required data string protocol is not similar to one of the preconfigured outputs, the data output string must be programmed manually using the BUILD, TOKENS, AND WEIGHTS menus.

Follow these steps to customize the Data Output String.

1. While in the CONFIGURATION MENU., press PAGE FORWARD once.
2. Select CONFIGURE OUTPUTS.

3. Select COM PORT \mathbf{X} to configure the output data string.

4. Press the LOAD option.

8.6.4. Method 2 - Customizing Data Output Strings, Continued

When configuring an output data string, the FB2550 Instrument has seven (7) commonly used preconfigured outputs.
5. Select the correct Load format.

- Configure COM1 was selected in Step 8 for the following data string BUILD example.
- The Data String Load selected is the one used as the foundation for customizing the BUILD.

6. Press the YES button to load the default configuration for the data protocol selected.

For a few seconds, a similar message to this verifies a successful load.
7. Select the BUILD option to begin customizing the data string.

The BUILD window displays.

8.6.4. Method 2 - Customizing Data Output Strings, Continued

8. Select the SCALE, if entering this field applies.

- This option applies to sites with more than one scale.
- Selecting the Scale will limit the available options for configuring its data string.
- If this field is left blank and there is more than one scale on the site, all formatting will default to the scale that is currently being formatted.

9. Select a DATA TYPE input field to edit it.

Listed below are the available options for building the data string.

- TEXT - Allows text entry values in the location.
- UNITS TOKENS - Designates the unit of the data such as lbs or kgs.
- MODE TOKENS - Designates if the weight is Gross, Tare, or Net.
- SCALE STATUS - Designates the operating status of the scale such as motion, overcapacity, and behind zero.
- LOAD CELL STATUS - Designates if a load cell has a potential problem.
- STATUS BYTE A, B or C - Similar to Scale Status item but also includes graduation size, decimal point, and units.
- GROSS WEIGHT, TARE WEIGHT, NET WEIGHT - Weights retrieved from the scale selected for the data item configured.
-
- DISPLAYED WEIGHT - Value which is currently shown on the display.
- <<REMOVE>> - Removes the data item selected from the data string configuration.

10. Press the SAVE CHANGES button to save and exit to the BACK: CONFIGURE COM1 menu.

8.6.4. Method 2 - Customizing Data Output Strings, Continued

ADDING A NEW DATA TYPE

1. In the COMX - Build window, press the ADD ROW button for a new Data Type item, placed at the end of the string.
2. Select the correct SCALE, if this applies.
3. Open the DATA TYPE entry field, and select the correct one.
4. Press the SAVE CHANGES button to save and exit to the BACK: CONFIGURE COM1 menu.
5. In the Configure Options menu, select the TOKENS menu.
6. In the COMX - Tokens window, open the POLL option to select a polling character for the Demand Mode.

8.6.4. Method 2 - Customizing Data Output Strings, Continued

7. In the COMX - Tokens window, open the START to select the available start character for all modes.
 all modes.
8. Enter the PRIMARY UNITS legend.

- Example: Ib

11. Enter the SECONDARY UNITS legend.

- Example: $\mathbf{k g}$

NOTE: Format all Threshold Weight settings to the same PRIMARY UNITS used, preventing any errors in programming.

8.6.4. Method 2 - Customizing Data Output Strings, Continued

12. Press PAGE FORWARD once.

- This page configures the Status: token for the output data string.
- Each item configured will indicate the character programmed in the output data string.
- If Motion is present on the scale, a "M" will be transmitted in the data string.
- The Capacity value will indicate if the scale is overloaded.

13. Press PAGE FORWARD.

- This page configures the Mode: token for the output data string.
- Each item configured will indicate the character(s) programmed in the output data string.
- The Remote Commands configuration establishes if a CARRIAGE RETURN is required when sending a remote command, such as a Zero Command.

- If the CARRIAGE RETURN check box is selected, the remote Zero Command is $\mathbf{Z}<\mathbf{C R}>$.
- Otherwise it would be a "Z" only.

14. Select RETURN TO WEIGHING TO TEST and verify the output is producing the desired results.

- Press the SAVE CHANGES button, or they will be lost.

8.6.5. Configuring a COM Port for Scale Summing

Follow these step to program Scale Summing.

1. While in the CONFIGURATION MENU, press PAGE FORWARD once.
2. Select CONFIGURE OUTPUTS.
3. Select the correct COM Port to configure the output data string.

4. Press the BUILD option.
5. To configure the COM Port Output for SCALE SUMMING, set the window similar to the sample screen to the right.

8.7. IP Output Configuration

The IP Output is available using the Ethernet connection of the FB2550 Instrument.

- Follow these sections to configure the Communication Data String Protocol.
- The MODE selection configures the Network (Continuous) or Network (Auto).
- The final step of the IP Configuration is assigning the communication parameters for the device on the Network.

1. While in the CONFIGURE OUTPUTS menu, select IP SETUP.
2. The IP SETUP configuration screen has several parameters to program.

- The Local Port can be a random number which is assigned to the FB2550 Instrument.
- Port numbers are values from 0 to 65535.
- Ports 0 to 1024 are reserved for certain privileged services.
- The combination of Port Number and IP Address is called a SOCKET.
- The LOCAL PORT and REMOTE PORT values should match.
$\checkmark \quad$ Default $=5001$
- The Remote Port: looks for information to forward to the Remote Host: (remote device
 name) application.
- The Timeout: function is to stop communications when it is inactive.
The Keep Alive / Linger settings will act as a means to keep the connections active even when activity is limited.

3. Press PAGE FORWARD once.

- The settings shown assist with networks which have active firewalls, and permit the IP communications to continue operating,
 instead of becoming blocked by the networks firewall settings.
- Press the SAVE CHANGES button when any changes are made otherwise the changes will be lost.

8.8. RS-485 Configuration

The RS-485 output is available from the RS-485 accessory (30937), or from the Serial Expansion accessory (30921).

- Refer to Section 8.8.3. Method 1 - Preconfigured Output or Section 8.8.4. Method 2. - Customizing Output Data Strings.
- These sections describe how to configure the data string protocol for the communications.
- The final step for the RS-485 configuration is to assign an ID for the RS-485 communications network.
- This address is a requirement for proper operation.

Follow these steps to configure the RS-485 ID.

1. While in the CONFIGURATION MENU, press

PAGE FORWARD once.
2. Press CONFIGURE OUTPUTS.

номе	BACK: номе	Configuration Menu
audit tran	Programmable Prompts	
operator menu	Entry Sequence Prompts	
Configuration menu	Format Tickets	
return to weiching		
	Configure Outputs	
	Vehicle Image Type	
	page back	page forward

3. Select EDIT RS-485 ID to edit this option.

4. In the RS-485 ID field, enter the ID value, from 1 to 32.

NOTE: A ZERO (0) disables this feature.

- Press the SAVE CHANGES button when
 any changes are made, otherwise they will be lost.

8.9. Network Parameters Configuration

The Network Name: is a unique identifier of the instrument as it appears on the Network to which it connects.

- Configure the NETWORK TYPE as a Static or Fixed IP, and either DHCP or Dynamic IP Addresses.
- The IP ADDRESS and SUBNET MASK are unique address values designed to function within the Network for which it is configured.
- IP Address is an identifier for a computer or device on a TCP/IP Network. Networks using the TCP/IP Protocol route messages based on the IP Address of the destination.

A SUBNET MASK is a local division of a Local Area Network (LAN), which is created to improve performance and provide Network security.

1. While in the CONFIGURATION MENU, press the PAGE FORWARD button twice.
2. Select the NETWORK PARAMETERS option.

номе	BACK: HOME	Configuration Menu
audit trail	Threshold weights	
operator menu	Traffic Light Control	
configuration menu	Configuration Options	
URn to weichinc	 Network Parameters	
	Report Printer	
	dage back	PaGE forward

3. Click the NETWORK TYPE button.

8.9. Network Parameters Configuration, Continued

4. Select either STATIC IP or DHCP.

- If cable is connected upon initial Power Up and Configuration, the Network type selection will default to STATIC.

5. For STATIC IP, enter the correct IP Address, Subnet Mask, Default Gateway and DNS Server Addresses.

- Press the SAVE CHANGES button, or they will be lost.

home	back: configuration menu	Network Parameters		
audit trail	Network Type:			CANCEL
operator menu	Static ip			
Configuration menu	Dhcp			
return to weighing				

номE	BACK: CONFIGURATION MENU		Network Parameters		
audit trail	Network Name: ${ }^{\text {FB2550 }}$				
OPERATOR MENU	Network Type:	Static IP			
CONFiguration menu	IP Address	192	168	1	1
RETURN TO WEIGHING	Subnet Mask:	255	255	255	0
	Default Gateway:	192	168	2	2
	DMS Server:	0	0	0	0
	SAVE CHANGES				

IMPORTANT NOTE: The instrument must be rebooted for any Network changes to take effect.

8.10. Fieldhus Protocols and Formats

8.10.1.Transmission Methods

Communication protocols are simular to conversations; there are several different languages and methods used.

- PROFIBUS-DP, MODBUS-TCP, INTERBUS-S, and ETHERNET/IP use a method called "source-destination" communications. The message packets have destination information in them, and the Fieldbus passes a token from node to node in a timed fashion.
- DEVICENET, CONTROLNET, and CAN use a broadcast, producerconsumer model for communications. Messages are broadcast to all nodes, and each node only "hears" messages intended for it.

8.10.2.Communication Format

Another major difference among Fieldbuses is the format of the communications themselves.

- DEVICENET and CAN messages are eight bytes long.
- PROFIBUS-DP is "word-oriented", and can have up to 256-byte "stack" per message.

COSTS vs. SPEED

- PROFIBUS-DP and CONTROLNET are very fast networks - 12 megabits per second and $500 \mathrm{Mb} / \mathbf{s}$, respectively. They are much more expensive to operate.
- DEVICENET is less expensive.

8.10.3. Handling Network Traffic

FIELDBUSES also handle network traffic in different ways.

- DEVICENET and CAN use "non-destructive bitwise arbitration." When two messages collide, the higher priority message goes first. If the two are equal priority, there is a mechanism within DeviceNet (as well as CAN) that decides which one should go first.
- When a collision occurs in ETHERNET, all devices "back off" and re-send their messages, which results in slower transmissions.

SECTION 9: ACEESSORIES

9.1. Accessory Parts List

9.1.1. Printers and Accessories

SERIAL PRINTERS

$\mathbf{3 3 2 9 2}$	EPSON TM-U220 DOT MATRIX PRINTER
$\mathbf{2 9 2 6 0}$	$-\quad$ Ribbon
$\mathbf{3 0 9 5 4 Q}$	EPSON TM-U230 MATRIX PRINTER
$\mathbf{2 9 2 6 0}$	$-\quad$ Ribbon
$\mathbf{2 4 7 4 1}$	EPSON TM-U295 TICKET PRINTER
$\mathbf{1 4 9 7 9}$	$-\quad$ Ribbon
96757	- Scale ticket, 2 part
96756	- Scale ticket, 3 part
$\mathbf{1 6 2 8 8}$	- Scale ticket, 4 part
$\mathbf{2 4 7 4 0}$	EPSON TM-U590 TICKET PRINTER*
$\mathbf{2 4 8 1 0}$	$-\quad$ Ribbon Cartridge
$\mathbf{3 2 4 0 3}$	EPSON EU-T432 THERMAL TAPE PRINTER
$\mathbf{3 2 4 0 4}$	$-\quad$ Paper
$\mathbf{2 0 4 8 1}$	CITIZEN iDP3550 PRINTER
95952	$-\quad$ Ribbon
$\mathbf{1 1 5 3 5}$	- Paper Roll Tape, 3"X3", 1 Ply
N/S	STAR SP298 TICKET PRINTER
N/S	STAR SP700 IMPACT PRINTER
N/S	STAR SP2000 IMPACT PRINTER
N/S	STAR SP2200 TICKET PRINTER

USB PRINTERS

33220	XEROX PHASER 3040 LASER JET PRINTER
$\mathbf{2 9 8 2 7 C}$	-6^{\prime} Hi-Speed USB 2.0 A-to-B Cable (Specify on order - N/C with printer)
$\mathbf{1 9 9 4 6}$	ML 420 SERIES PARALLEL/ USB FORM PRINTER
96799	- Blank 4-part Tickets
96801	- Blank 2-part Tickets
N/A	HP2055 LASER JET PRINTER

PRINTER ACCESSORIES

$\mathbf{3 2 6 7 4}$	EPSON POWER SUPPLY
$\mathbf{1 4 8 0 9}$	SERIAL CABLE
$\mathbf{2 5 9 3 2}$	SERIAL CABLE

* Uses the same tickets as the TM-U295.

N/S - Not Sold by Fairbanks Scales.
N/A - Not Available.

9.1.2. Additional Accessories

$\mathbf{3 2 4 2 6}$	LOOP DETECTOR KIT
$\mathbf{3 1 8 6 6}$	FILTERED COOLING FAN KIT
$\mathbf{1 0 - 4 0 0 2 - 0 0 9}$	TRANSCORE RFID SCANNER
$\mathbf{2 5 4 9 8}$	EXTERNAL MINI KEYBOARD - USB 87-KEY
$\mathbf{3 1 0 3 6}$	EXTERNAL KEYBOARD - USB 104-KEY

CAMERA AND ACCESSORIES

31080	OUTDOOR IP CAMERA AND POLE ADAPTER
32373	- Pole Adapter Plate for Video Camera
15808	- Pole Adapter Plate Mounting Clamps (3" Pole)
15809	- Pole Adapter Plate Mounting Clamps (4"' Pole)
15810	- Pole Adapter Plate Mounting Clamps (5" Pole)

9.2. Programming the Traffic Light Control

The TRAFFIC LIGHT CONTROL shows the status of the scale's traffic light. It is typically controlled automatically by the instrument weighment cycle.
The light has a manual override using the touch screen on the main weighing display.
Each of the two (2) I/O RELAY CARDS supports two (2) sets of lights, totaling four (4) Stop Light Units.

Follow these steps to configure the Traffic Light Control.

1. While in the WEIGH SCREEN, press the MENU button.
2. Press LOGIN.
3. Enter the Write Customer Password or Service Password, then press the LOGIN button.
4. Open the CONFIGURATION MENU.
5. Press PAGE FORWARD twice.

6. Select TRAFFIC LIGHT CONTROL.
7. Select SCALE ID X TRAFFIC CONTROLS.

9.2. Programming the Traffic Light Control, Continued

8. Select the TRAFFIC LIGHT

CONTROL button to one of the following options.

- Disabled
- 1 - Traffic Light
- 2 - Traffic Lights

9. In the second button to the right, select
 whether the Traffic Lights operate in a MANUAL or AUTOMATIC mode.

10. BARRIER/GATES control is used to control the Traffic Gates.

9.2. Programming the Traffic Light Control, Continued

11. Select the LOOP DETECTOR control button.

- Sensor Loops alert that the vehicle has entered the scale, and also that it is leaving.

12. Select the correct Loop Detector.

- Extra LOOP choices (i.e. 3- Loop, 4-Loop) appear when the second optional Relay Card (30920) is added to the Instrument.

13. Select the ZERO ON APPROACH Control button.

- Driver pulls up and stops on the Loop.
- The scale ZEROs, and the traffic light changes to green, signalling the driver to pull ahead.

14. Choose NO or YES.
15. Select the INHIBIT IF ACTIVE Control button.

16a. Selecting YES will NOT allow a weighment to be processed if a Loop Detector is "active".

- This ensures that a truck is fully scaleborne before a weight can be processed. Trucks which are in succession cannot stop on the top of the loops, or the weighment transaction will not be permitted.

OR...
16b. Select NO to allow a transactions to be processed, even if a the vehicle is still detected at the loop.

- COMPLETE CYCLE is a feature to be used in the future with the Axlematic Application.

9.2. Programming the Traffic Light Control, Continued

16. Press the SAVE CHANGES button when any changes are made, or they will be lost.
17. Press Page Forward.
18. To the right of the Event to Signal:, select TIME DELAY OF X SECONDS Control button.
19. Click on the correct time value.

- This is the time delay from when the truck enters the scale.

DEFAULT = 6 SECONDS
20. Select the TRAFFIC DIRECTION Control button.

- This selects which way the vehicles will normally be traveling.

21. Select either INBOUND or OUTBOUND.
22. Select either the SET ALL OUTPUTS ON or the SET ALL OUTPUTS OFF Control Button.

- Activates or deactivates the Traffic Lights for troubleshooting.

- Press the SAVE CHANGES button, or they will be lost.
- Select BACK: TRAFFIC LIGHT CONTROL to return to the previous menu.

9.3. Video Camera Programming

1. While in the WEIGH SCREEN, press the MENU button.
2. Select LOGIN, then enter the Write Customer Password or Service Password.
3. Press the LOGIN button.
4. Open the CONFIGURATION MENU.
5. Press PAGE FORWARD twice.
6. Select VIDEO CAMERA INPUTS.

The FB2550 has two (2) IP video camera inputs.

- These can be stored with the Transaction Data
- They can be displayed on the Instrument's Weigh Screen, Idle Screen: setting, in various ways.

7. To activate this feature, select YES to one or both of the CAMERA 1 or 2
ENABLED options.
8. Select the CAMERA 1 or $\mathbf{2}$ TYPE.
9. Enter the CAMERA 1 or $\mathbf{2}$ IP address.
10. Press PAGE FORWARD.
11. Select either NONE, CAMERA 1, CAMERA 2, or TOGGLE for each of the button options listed below.

- The video camera can toggle between the two cameras or display them individually.
- Idle Screen
- Store Trans
- Print Ticket
- Select Screen
- Store Blind Ctr (Control)
- File Format

9.3. Video Camera Programming, Continued

12. In the File Format option, save the images in either a PDF or JPG file format.

Hоме	BACK: CONFIGURATION MENU	Camera
audit trail	File Format:	CANCEL
operator menu	JPG Image (*.JPG)	
configuration menu		
service menu	Bitmap Image (*.BMP)	
ExPansion cardo		
Return to weighing		

- Press the SAVE CHANGES button, or they will be lost.
- Select BACK: CONFIGURATION MENU to return to the previous menu.

9.4. External Display [Dual Cloning]

The following section details how to install an External Display for Dual Cloning of the Instrument.

- The FB2550 out of the box is setup to recognize one (1) Display/ Built-in LCD.
- Sites/Customers may want cloning to enhance viewing of a larger display, yet still keep the instrument locally usable.

Install these two components to set up Dual Cloning, or to fix a screen shift from the previous dual cloning.

- USB Auxiliary Keyboard (to send hotkey sequences)
- External VGA Display

9.4.1. Standard Setup

Follow these steps to configure an Instrument with Dual Displays.

1. Press CTRL+ALT+F12.

- The Intel ${ }^{\circledR}$ Graphics Media window appears.

2. From the left column, open the DISPLAY DEVICES tab.
3. From the MULTIPLE DISPLAY radio options, select Intel (R) Dual Display Clone.
4. Click APPLY.

5. When the pop-up notice appears, click OK to confirm the new settings.

NOTE: After completing this STANDARD SETUP procedure, the External Display should be programmed and function correctly.

- The following page details the standard defaults of the DISPLAY SETTINGS tab.

9.4.2. Display Settings Defaults

1. From the left column, open the Display Settings tab.
2. In the Color Quality drop-down menu, select 32 Bit.
3. In the Screen Resolution drop-down menu, select 800×480.
4. In the Refresh Rate drop-down menu, select 60 Hertz.
5. Press the ASPECT RATION OPTIONS button.

6. Select Full Screen (No Border).
7. Press the APPLY button.
8. Press the $\mathbf{O K}$ button.

- Doing this returns to the Display Settings tab of the Intel ${ }^{\circledR}$ Graphics Media window.

9. In the Display Settings tab, press the APPLY button.

Aspect Ratio Options ? X

10. When the pop-up notice appears, click OK to confirm the new settings.

9.4.3. Disabling the External Display

Follow these steps to disable the external display, once it has been activated.

1. Press CTRL+ALT+F12.

- The Intel ${ }^{\circledR}$ Graphics Media window appears.

2. In the SINGLE DISPLAY radio options, select NOTEBOOK.
3. Click APPLY.

4. When the pop-up notice appears, click OK to confirm the new setting.

Confirm the Desktop Change \underline{x}
This desktop has been reconfigured. Do you want to keep these settings?
If you do not respond within 15 seconds, these changes will be canceled.

9.4.4. Restoring the Display with an External Keyboard

If the external screen is unreadable, or if screen calibration is inaccurate, navigating with the touch screen may be impossible.

- Be certain the external screen and keyboard are securely installed.

Follow these steps to restore the display on the FB2550 Instrument using the external keyboard.

1. Press the TAB key thirteen (13) times.

- The cursor should be in the Multiple Displays region of Display Devices.

2a. Either press the DOWN arrow two (2) times.

- This changes the Single Display Notebook to Multiple Display Clone.

OR...
$2 b$. If Dual Cloning feature is already actively running on the displays, press the TAB key thirteen (13) times.
3. Press the DOWN arrow once(1).
4. Press the TAB key four (4) times.

- The cursor should be at Screen Res option.

5. Press the DOWN arrow to select 800×480.

- Pressing the DOWN arrow two to three (2-3) times will be the last value.

6. Press the TAB key ten (10) times.
7. Press the Space bar.

- The cursor should be at the APPLY button.

When the external monitor is unreadable, these steps restore the default display settings with the external keyboard.
8. Press the Space bar again to accept the settings.
9. Press the LEFT arrow two (2) times.

- The cursor should be at the OK button.

10. Press the SPACE BAR.

11. When the pop-up notice appears, click OK to confirm the new settings.

- This exits the Intel ${ }^{\circledR}$ Graphics View program

SECTION 10: SERVICE \& MAINTENANCE

10.1. Datahase Maintenance

10.1.1. Database Backup

The FB2550 Instrument has three (3) methods of database backup routines.
A. BACKUP DATABASE TO FLASH - Backs up the database to the micro SD card located on the Multi-Function board.
B. BACKUP DATABASE TO EXTERNAL FLASH - Backs up the database to a USB Flash drive, inserted into an available USB port on the instrument rear panel.
C. BACKUP AND SEND AN EMAIL - Backs up the database and attach the file to an email, which is sent to a predetermined user.
D. BACKUP TICKET FORMAT TO FLASH - Backs up changes in the ticket format to the internal memory.
E. BACKUP TICKET FORMAT TO EXTERNAL FLASH - Backs up changes in the ticket format to the external, removable memory drive.

NOTE: Backups can only be used if they are within the same revision family.
Example: Rev. 4.1 to 4.2 is OK. Rev. 3.5 to 4.0 is NOT OK.

10.1.1. Database Backup, Continued

A. BACKUP DATABASE TO FLASH [INTERNAL]

1. While in the Weight Screen, press the MENU button.
2. Press LOGIN.
3. Enter the Write Customer Password or Service Password.
4. Press the LOGIN button.
5. Select CONFIGURATION MENU.
6. Select DATABASE MAINTENANCE.
7. Select BACKUP DATABASE TO FLASH.

10.1.1. Database Backup, Continued

B. BACKUP DATABASE TO EXTERNAL FLASH

1. Insert a USB FLASH DRIVE into an available port on the Instrument's rear panel.
2. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.

3. Select BACKUP DATABASE TO EXTERNAL FLASH.

4. Select either CONTINUE or CANCEL.

5. After completing the External Backup, press the CONTINUE button to return to the Database Maintenance menu.
6. Remove the USB FLASH DRIVE.

10.1.1. Database Backup, Continued

C. BACKUP AND SEND AN EMAIL

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.

2. Select BACKUP AND SEND VIA EMAIL.

номе	backi configuration menu	Database Maintenance
aubit tratl	Backup Database to Flash	
operatormenu		
	Backup Database to External Flash	
sernice menu	Backup Ticket format to Flash	
return to weighimg	Backup Ticket format to External Flash	
	Restore Database from Flash	
	Restore Database from External Flash	
		page forward

3. Select either CONTINUE or CANCEL.

4. After completing the External Backup, press the CONTINUE button to return to the Database Maintenance menu.
5. Remove the USB FLASH DRIVE, if one is used.

- Press RETURN TO WEIGHING to exit to the Weigh Processing screen.

10.1.1. Database Backup, Continued

D. BACKUP TICKET FORMAT TO

FLASH - Backs up changes in the ticket format to the internal memory.

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.

2. Select BACKUP TICKET FORMAT TO FLASH.

noer	macceownauanow wewu Database Maintenance
morrum	
\%raveramem	
	¢ ¢
-	

3. Press CONTINUE to complete the operation.

4. Press CONTINUE to finish the process.

10.1.1. Database Backup, Continued

E. BACKUP TICKET FORMAT TO EXTERNAL FLASH - Backs up changes in the ticket format to the external, removable memory drive.

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.

номе	backi configuration menu	Database Maintenance
aubit tratil	Backup Database to Flash	
operatormenv	Backup Database to External Flash	
configuration meru	Backup and Send via Email	
service mernu		
Expansloncaros		
RETURNTO WEIGHINE	Backup Ticket format to External Flash	
	Restore Database from External Flash	
		page forward

4. Press CONTINUE to finish the process.
5. Press CONTINUE to complete the operation.

10.1.2. Database Restore

RESTORE DATABASE FROM FLASH uses a database backup from the Micro SD Card, located on the Multi-Function Board.

RESTORE DATABASE FROM EXTERNAL FLASH uses a database backup from an External USB Flash Drive.

- These two options restore the instrument's database to the same condition as when the backup was performed previously.

A. RESTORING DATABASE FROM FLASH

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.

2. Press RESTORE DATABASE FROM FLASH.
3. Select either CONTINUE or CANCEL.
4. Once the process is complete, press the CONTINUE button to return to the Database Maintenance menu.

10.1.2. Database Restore, Continued

B. RESTORING THE DATABASE FROM EXTERNAL FLASH

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.
2. Select RESTORE DATABASE FROM EXTERNAL FLASH.
3. Select the correct EXTERNAL RESTORE file from the list.
4. Press CONTINUE button to complete the process, or press the CANCEL button to stop the procedure.

- A warning displays to confirm the decision to proceed.
- The External Restore process may take several minutes to complete.
- When the Database Restore is complete, press the CONTINUE button to return to the Database Maintenance menu.

10.1.2. Database Restore, Continued

C. PROCEDURE RESTORE DATABASE FROM DEFAULTS

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.
2. Press PAGE FORWARD once.
3. Select RESTORE DATABASE FROM DEFAULTS.

- A warning displays about whether or not to proceed.
- The message will confirm that the correct backup file has been selected.

4. Press CONTINUE button to complete the process, or press the CANCEL button to stop the procedure.

- This process could take several minutes.

5. When the Database Default Restore process is complete, press the CONTINUE button to return to the Database Maintenance menu.

- Press RETURN TO WEIGHING to exit to the Weigh processing screen.

10.1.3. Re-Index Database

1. While in the CONFIGURATION MENU, select the DATABASE MAINTENANCE MENU.
2. Press PAGE FORWARD once.
3. Select RE-INDEX DATABASE.

- A warning will display of whether or not to proceed.

- This process could take several minutes.

4. Press CONTINUE button to complete the process, or press the CANCEL button.
5. When the Database Re-Index process is complete, press the CONTINUE button to return to the Database Maintenance menu.

10.1.4. Transaction Data Backup Days Reminder

This option emails a reminder to update the database.

1. While in the Weight Screen, press LOGIN.
2. Enter the Write Customer Password or Service Password.
3. Press the LOGIN button.
4. Select CONFIGURATION MENU.
5. Press PAGE FORWARD twice.
6. Select CONFIGURATION OPTIONS.
7. Enter a numeral in the Transaction Data Backup Days input field.

- This sets a timed reminder for the Data Backup.
- A value of $\mathbf{0}$ disables this feature.

8. Press the SAVE CHANGES button, and the program returns to the CONFIGURATION

Home	BACK: HOME	Configuration Menu
AUDIT TRAIL	Threshold Weights	
operator menu	Frffirimhtfontrol	
Configuration mey	Configuration Options	
SERVICE MENU	Video Camera Inputs	
EXPANSİN CARDS	Network Parameters	
RETURN TO WEIGHING	Printer Spooler	
Report Printer		
	PAGE BaCk	Page forward

MENU when complete.

10.1.5. Completed TXN IMGS

This option allows the camera images to be viewed, emailed, deleted and copied to USB device.

1. While in the CONFIGURATION MENU, select DATABASE MAINTENANCE.
2. Press PAGE FORWARD twice.

3. Select MANAGE COMPLETED TRANSACTION IMAGES.

4. Select any of the following options.

- VIEW ALL
- DELETE ALL
- VIEW BY TICKET NUMBER
- DELETE BY DATE RANGE
- VIEW BY DATE RANGE
- DELETE BY TICKET NUMBER RANGE
- VIEW BY TICKET NUMBER RANGE

5. Select one of the following options.

VIEW displays the stored image.
EMAIL sends this image to any recipient within the database.

DELETE erases the image completely.
COPY TO USB DEVICE stores the image to a USB flash drive.

- Each image is Time and Date Stamped for security recording purposes.
- Pressing CONTINUE returns to the COMPLETED TXN MSGS menu.

10.2. Printer Troubleshooting

PAPER JAMS

When paper jams occur within one area of the printer, unplug the power cable, then clean that area of the paper path with alcohol and cotton balls.
The following can cause paper jams.

- Selecting incorrect paper type.
- Using creased, moist or damaged paper.
- Using unsupported paper.
- Overfilling the tray.
- Loading paper incorrectly.
- Adjusting the paper guides improperly.

Noted below are some preventative measures.

- Always use clean, undamaged paper.
- Always fan the paper.
- Observe the paper tray fill line.
- Avoid polyester coated paper (designed for inkjet or thermal-type printers).
- Adjust the guides correctly to fit the paper size.
- Store the printer and paper in a dry location.
- Select the correct paper size for printing.
- Use only XEROX® recommended paper.

NOTE: For complete printer descriptions, see Section 8.1. Printers.

DOES NOT TURN ON

PROBABLE CAUSE (S)	
Switch not turned on.	Turn on switch.
Problem with outlet connections.	Test outlet, then resolve wiring issues. \quad Plug it into a different outlet.

RESETS OR TURNS OFF FREQUENTLY

PROBABLE CAUSE(S)

SOLUTION(S)

Power cord is not connected firmly.	Turn off printer, then confirm the power cord is plugged in correctly, then turn on the printer.
System error occurred.	-Reboot the printer. Print the ERROR HISTORY from the Information Pages of the Printer Setting Utility.
Printer connected to an UPS, or is connected to a power strip shared with other high-power devices.	Turn off the printer, then connect it to a more suitable outlet.

10.2. Printer Troubleshooting, Continued
 DOES NOT PRINT

PROBABLE CAUSE(S)	SOLUTION(S)
Printer in Energy Saver mode.	Push the Control Panel button.
Error message displays.	Follow message instructions.
Error Instrument is ON.	If the Ready Instrument is OFF, printer is out of toner. Replace the cartridge. If the Ready Instrument is flashing, load paper in the Main Tray.
Error Instrument is blinking.	- If the Ready Instrument is OFF, the printer is not working. Reboot the printer. If the Ready Instrument is flashing, the printer is canceling a job or is initializing the non-volatile memory.
Both control panel Instruments are OFF.	- Turn off the printer, check the plug and outlet. Restart the printer.
The Ready Instrument is flashing.	- If the Ready Instrument is flashing, but the printer is not functioning, a previous print job could be in error. Delete any print jobs in the queue. Force the printer to print by pushing the Control Panel
button.	
If the Ready Instrument is not flashing after sending a print	
job, check the USB cable connections, then reboot the	
printer.	

MAKES UNUSUAL NOISES INSIDE

PROBABLE CAUSE(S)

Obstruction or debris inside the printer.

SOLUTION(S)
Turn off and unplug the printer, then remove the debris or obstruction.

- NEVER USE HAND TOOLS OR OTHER ITEMS TO PROBE INTO THE PRINTER.

CONDENSATION INSIDE

PROBABLE CAUSE(S)

Printer has been sitting idle in a cold room.

Relative humidity of the room is too high.

SOLUTION(S)

- Wipe moisture out with cloth. Clean with alcohol and cotton balls.
- Allow the printer to operate for several hours at room temperature.
- If possible, reduce the humidity within the room.
- If not, move the printer location to where temperature and humidity are within the operating specifications.

APPENDIXI: FIEIDBUS REFERENCE

A. Overview

The term FIELDBUS usually describes an all-digital two-way communications system that interconnects measurement and control equipment such as sensors, actuators and controllers.

- Fieldbus traces its beginnings in the automotive industry, where efforts to simplify and reduce wiring resulted in a multiplexed CAN (Controller Area Network) system of modules installed at various points of a vehicle.

WORKING EXAMPLE

Most cars have multiple controls on the door panel, such as power-window, power-mirror, power-lock and power-seat controls. A Fieldbus Network combines all the switch wires into a two wire communication BUS. Pressing a switch closes a relay that provides power to the window motor, sending a packet of data onto the communication bus to adjust the passenger-side mirror.

Noted below are the five (5) Fieldbus Interfaces types used with the FB2550 Instrument.

DEVICENET - A network system to interconnect control devices for data exchange.

- It uses a differential serial bus, called Controller Area Network (CAN), as the backbone technology and defines an application layer to cover a range of device profiles.
CONTROLNET - An open Control Network in realtime, for high-throughput applications.
MODBUS-TCP - Serial network communications in a master/slave (request/response) type relationship using either ASCII or RTU (Remote Terminal Unit) modes.
- Non-powered two-wire (RS-485) network, with up to $\mathbf{1 2 6}$ nodes, transfering a maximum of 244 data bytes per node per cycle.
PROFIBUS - Protocol use primarily in Europe which

Typical Fieldbus Card installation. utilizes a non-powered two-wire (RS-485) Network.

ETHERNET/IP - An Industrial Application Layer Protocol used for communication

 between industrial control systems and their components.- Not to be confused with the simple combination of EtherNet and the Internet Protocol, but instead, the "IP" in EtherNet/IP stands for "Industrial Protocol".
- Such components include Programmable Automation Controller, Logic Controller, or an I/O System.

NOTE: For complete procedures, see Section 10.4. Installing the Fieldbus Interface Kit (30922 thru 30925).

B. DeviceNet (30923)

DEVICENET is a low-cost communications link that connects industrial devices to a network, eliminating expensive hardwiring.

- It is based on a broadcast-oriented, communications protocol the CAN.
- The CAN Protocol was originally developed by BOSCH for the European automotive market for replacing expensive wire harnesses with low-cost network cable.
- The CAN Protocol has fast response and high reliability for applications like antilock brakes and air bags.

DEVICENET also provides power to the network. This allows devices with limited power requirements to be powered directly from the network.

- This reduces connection points and physical size.
- The maximum network size is up to 64 Nodes, with message data packets up to 8 bytes.

WIRE	SIGNAL	DESCRIPTION
1	V	Negative bus supply voltage
2	CAN_L	CAN low bus line
3	SHIELD	Cable shield
4	CAN_H	CAN high bus line
5	V $_{+}$	Positive bus supply voltage

B. DeviceNet (30923), Continued

NETWORK STATUS LED

STATE	INDICATION
OFF	Not online/ No power
GREEN	Online, one or more connection established
FLASHING GREEN (1 Hz)	Online, no corrections established
Red	Critical link failure
Flashing Red (1 Hz)	One or more connections timed out
Alternating Red/Green	Self-test

NS	$=$ Operation Mode LED
MS	$=$ Mode Status LED
Connection	$=$ DeviceNet Connector

MODULE STATUS LED

STATE	INDICATION
OFF	No power
GREEN	Operating in normal condition
FLASHING GREEN $\mathbf{(1 ~ H z) ~}$	Missing/Incomplete configuration/ Device needs comminssioning
Red	Unrecovrerable fault(s)
Flashing Red (1 Hz)	Recoverale fault(s)
Alternating Red/Green	Self-test

C. ControlNet (30924)

CONTROLNET (30924) is an open ControlNetwork running in "real-time", for highthroughput applications.

- It uses a Control and Information Protocol (CIP), combining the functionality of an I/O Network and a Peer-to-Peer Network.
- CONTROLNET is based on the Producer/Consumer Model, permiting all nodes on the network to simultaneously access the same data from a single source.
- Maximum of 99 nodes, with no minimum distance between nodes
- The ControlNet card uses BNC connectors.

SPECIAL NOTES

For signal redundancy, both connectors should be used.
Network Status LED A and Module Status LED correspond to LED 1 and LED 2 in the instance attributes of the Anybus Object.

- They are available in the application interface, but the LED placement on the front does not conform to the standard Anybus CompactCom placement of LED 1 and LED 2.

C. ControlNet (30924), Continued

NETWORK STATUS

LED	STATE	INDICATION
A and B	OFF	Not online / No power
	Flashing Red (1 Hz)	Incorrect node configuration, duplicate MAC ID etc.
	Alternating Red/Green	Self test of bus controller
	Red	Fatal event or faulty unit
or B	OFF	Channel is disabled
	Alternating Red/Green	Invalid link configuration
	Flashing Green (1 Hz)	Temporary errors (node self-corrects) or node is not configured to go online.
	Green	Normal operation
	Flashing Red (1 Hz)	Media fault or no other nodes on the Network

MODULE STATUS

STATE	INDICATION
OFF	No power
GREEN	Operating in normal condition, controlled by a Scanner in RUN state.
FLASHING GREEN $\mathbf{(1 ~ H z)}$	The module has not been configured or the Scanner is in the Idle state.
Red	Unrecovrerable fault(s), EXCEPTION,
Flashing Red $\mathbf{(1}$ Hz)	Media fault or no other nodes on the Network

NO.	DESCRIPTION
1	Network Status LED A
2	Module Status LED
3	Network Status LED B
4	ControlNet Connector A
5	ControlNet Connector B

D. Modbus RTU (30925)

MODBUS (30925) PROTOCOL was originally developed in 1978 to exchange information between devices on the factory floor.

- It developed into the standard for exchanging data and communication MODULE STATUS information between PLC systems.
- Modbus-TCP devices communicate over a Serial Network in a master/slave (request/response) type relationship.
- Uses either the ASCII (American Standard Code for Information Interchange) mode or the RTU (Remote Terminal Unit) mode.
- In the ASCII MODE, two eight-bit bytes of data are sent as two ASCII characters.
- The primary advantage of ASCII mode is the flexibility of the timing sequence.
- Up to a one second interval can occur between character transmissions without causing communication errors.
- In the RTU MODE, data is sent as two four-bit, hexadecimal characters, providing for higher throughput than in ASCII mode for the same baud rate.
- Modbus Plus communicates using a single twisted pair of wires in one shielded cable (\#18AWG).
- Modbus Plus does NOT provide power on the network.
- Maximum of up to $\mathbf{3 2}$ Nodes, and up to 64 with a Repeater.

COMMUNICATION LED

NO.	DESCRIPTION
1	Communication LED
2	Device Status LED
3	Modbus Interface

LED STATE	DESCRIPTION
OFF	No power - OR - no traffic
YELLOW	Frame reception or transmission
RED	A fatal error has occured

D. Modbus RTU (30925), Continued

DEVICE STATUS LED

LED STATE	INDICATION
OFF	Initializine - OR - no power
GREEN	Module initialized, no error
RED	Internal error - OR -major unrecoverable fault
RED, SINGLE FLASH	Communication fault or configuration error Case 1: Invalid settings in Network Configuration error Case 2: Settings in Network Configuration Object has been changed during runtime (i.e. the settings do not match the currently used configuration).
RED, DOUBLE FLASH	Application diagnostics available.

MODBUS-TCP INTERFACE

PIN	DIRECTION	SIGNAL	COMMENT
Housing	-	PE	Protective Earth
1	-	GND	Bus polarization, ground (isolated)
2	Output 3	5V	Bus polarizatino power +5V DC (isolated
3	Input	PMC	Connect to pin \#2 for RS-232 operation
4			
5	Bidirectional	B-LINE	RS-485 B-Line
6			
7	Input	RX	RS-232 Data Receive
8	Output	TX	RS-232 Data Transmit
9	Bidirectional	A-Line	RS-485 A-Line

E. Modbus-TCP Interface Kit (32760)

Modbus-TCP is an open Master/Slave application protocol that can be used on top of Ethernet-TCP/IP. Modbus reads in 16 bit register sizes $==1$ word $==(2)$ bytes.

Test Software: recommended from industry customers

Simply Modbus TCP - free to evaluate Modscan32 - evaluation

Software Recomedations:

IPConfig - Developed by HMS Industries, free to use application that scans a network for ModbusTCP devices, and allows IP assignment.
https://www.anybus.com/support/file-doc-downloads/compactcom-30-seriesspecific/?ordercode=AB6223

Sample Reference to Input Data:

Function Code	Behavior	Absolute Address	Modicon 5 digital Address
3	Read Holding Register	$0-79,256-335$	$40001-40080$
4	Read Input Registers	$0-79$	$30001-30080$
Example Gross WT.	Read Input Registers	5,6	
3			

Connection Style:

RJ45 - Standard Ethernet Cat5 (supply sketch of back of module)

Duplexing is $10 / 100 \mathrm{Mbits} /$ full/half, and can be configured from the web interface.

F. ProfiBus-DP (30922)

PROFIBUS-DP utilizes a non-powered two-wire (RS-485) Network.

- A PROFIBUS-DP Network may have up to 126 nodes, transfering a maximum of $\mathbf{2 4 4}$ bytes data per node/ per cycle.
- Baud (Communication) Rates are selectable, and overall end-to-end network distance varies with speed.
- The maximum standard Baud Rate is $\mathbf{1 2 M b p s}$, with a maximum distance of 100M (328 ft), and $\mathbf{1 2 0 0 M}(3936 \mathrm{ft})$ at 93.75 Kbps without repeaters.
- PROFIBUS-DP connects to a wide variety of field devices including the following:
- Discrete and analog //O Drives.
- Robots.
- HMI/MMI products.
- Pneumatic valves.
- Barcode readers.
- Weigh scales.
- Transducers.
- Flow measuring equipment.

F. ProfiBus-DP (30922), Continued

PIN	SIGNAL	DESCRIPTION
3	B-Line	Positive RxxD/TxD, Rs485 level
4	RTS	Request to Send
5	GND	Ground (Isolated)
6	+5 Bus Output	+5V termination power (Isolated, short circuit protected)
8	A-Line	Negative RXD/TxD, RS485 level

OPERATION MODE LED

LED STATE	DESCRIPTION	COMMENTS
OFF	Not online or No power	
Green	Online/ Data Exchange	
Flashing Green	Online, clear	
Flashing Red (1 flash)	Parameterization error	See Parameterization Data Handling
Flashing Red (2 flashes)	PROFIBUS-DP configuration error	See Configuration Data Handling

MODULAR STATUS LED

LED STATE	DESCRIPTION	COMMENTS
OFF	No power - OR - not initialized	Module state $=$ "SETUP" OR NW-INIT"
Green	Initialized	Module has left the NW_INIT state
Flashing Green	Initialized, diagnostic events(s) present	Extended diagnostic bit is set
Red	Exception error	Module state $=$ EXCEPTION

NO.	DESCRIPTION
1	Communication LED
2	Device Status LED
3	Modbus Interface

NOTE: Additional information and EDS files are available at the following website. https://www.anybus.com/support/file-doc-downloads/compactcom-30-seriesspecific/?ordercode=AB6200

G. EtherNet/IP (31974)

The ETHERNET/IP MODULE utilizes the Industrial Protocol.

- The data is transmitted continuously from this module.
- Utility IPConfig - Developed by HMS Industries can scan a
 network for Ethernet IP devices, and allows IP assignment.
- EDS (Electronic Data Sheet file (Vendor specific data is accessible and recommended
- A custom EDS (Electronic Data Sheet) file is available from our website, uploading this file into PLC software can then help target correct memory addressing for scale data.

Use the following download to change the IP, Sub Net and Gateway addresses of an Ethernet/IP Module.
https://www.anybus.com/docs/librariesprovider7/default-document-library/software/hmsIPConfig.zip?sfvrsn=20

Use the following download to load into PLC software for configuring the Ethernet/IP module.
http://www.fairbanks.com/software/FB2550 090513.zip

Shown below is the NETWORK Status LED Chart.

STATE	DESCRIPTION
Off	No power or offline.
GREEN	Online, one or more connections established.
FLASHING	Online, no connections established.
RED	Duplicate IP address, FATAL error
FLASHING RED	One or more connections timed out.

Shown below is the MODULE Status LED Chart.

STATE	DESCRIPTION
Off	No power.
GREEN	Controlled by a scanner in RUN state.
FLASHING	Not configured, or scanner in idle state.
RED	Major fault, FATAL error.
FLASHING RED	Recoverable fault(s).

1. Network Status LED
2. Link/Activity
3. Module Status LED
4. Ethernet Interface (RJ-45) (Standard Cat 5 Cable)

Shown below is the Link / Activity LED Chart.

STATE	DESCRIPTION
Off	No link, no activity.
GREEN	Link established.
FLICKERING GREEN	Activity.

H. Fieldbus Protocols and Formats

Transmission Methods

Communication protocols are simular to conversations; there are several different languages and methods used.

- PROFIBUS-DP, MODBUS-TCP, INTERBUS-S, and ETHERNET/IP use a method called "source-destination" communications. The message packets have destination information in them, and the Fieldbus passes a token from node to node in a timed fashion.
- DEVICENET, CONTROLNET, and CAN use a broadcast, producerconsumer model for communications. Messages are broadcast to all nodes, and each node only "hears" messages intended for it.

Communication Format

Another major difference among Fieldbuses is the format of the communications themselves.

- DEVICENET and CAN messages are eight bytes long.
- PROFIBUS-DP is "word-oriented", and can have up to 256-byte "stack" per message.

COSTS vs. SPEED

- PROFIBUS-DP and CONTROLNET are very fast networks - 12 megabits per second and $500 \mathrm{Mb} / \mathrm{s}$, respectively. They are much more expensive to operate.
- DEVICENET is less expensive.

Handling Network Traffic

FIELDBUSES also handle network traffic in different ways.

- DEVICENET and CAN use "non-destructive bitwise arbitration." When two messages collide, the higher priority message goes first. If the two are equal priority, there is a mechanism within DeviceNet (as well as CAN) that decides which one should go first.
- When a collision occurs in ETHERNET, all devices "back off" and re-send their messages, which results in slower transmissions.

I. DT7000 Gateway

The DT7000 Communication I/O Gateway is a module that provides access between Industrial Networks and the serial device(s).

- The DT7000 utilizes one of the available Anybus Compact COM Modules for the desired Fieldbus.
- The Fieldbus Interface(s) support a bi-directional communication capability for the Instrument.
- The FB2550 Interface supports a variety of Industrial Protocols.

The following Fieldbus Networks are supported by the DT7000.

- Profibus-DP
- EtherNet/IP
- ControlNet
- DeviceNet
- MODBUS-TCP

MODULE LAYOUT

The image below shows the module layout.

INPUT POWER

The DT7000 requires Input Power of 9 to 40 VDC (24VDC normally) at the Terminal Block Connector (J-19).
See the cart below for Input Power connections.

J19 PIN	SIGNAL
1	PE
2	+V
3	-V

DT7000 SERIAL PORT CONNECTIONS

The DT7000 has four (4) serial ports.
Only Port B J16 is used.

See the two following tables for connecting serial devices to the DT7000.

RS232

PORT B (J16)	SIGNAL
1	GND
2	RX
3	TX
4	GND
5	ENB

If the ENB Signal on the RS232 connector is tied to the Ground, the RS232 is active, and the RS485 is disabled. If not, the RS485 is active, and the RS232 is disabled.

- Connect pins four and five ($\mathbf{4} \mathbf{\&} \mathbf{5}$) on the RS232 (J12, J4) to enable RS232.

FIELDBUS CONNECTION

The Fieldbus connects to the Anybus-CompactCOM Module.

- This connector is Fieldbus-specific.
- There are also LEDs on this module.

MODULE INDICATORS

Listed below are the four power LEDs on the module.

REF	GREEN	RED
D1	+24 POWER OK	REVERSE INPUT POWER
D2	+5V POWRE OK	RESETTLE FUSE TRIPPED
D3	+3.3V POWER OK	--
D4	I/O POWER OK	REVERSE I/O POWER

D1 indicates 24 V power is applied to the module. D2 and D3 indicate the internal voltages are being generated. All (3) LEDs will be on green when the module is operating properly. D4 indicates the I/O power is applied to the module and will be illuminated green when $1 / 0$ power is present.
There is a red/green dual color status LED (D5) on the module. On power up the LED flashes alternately red and green to indicate the module is starting up. Once the module is initialized, the status LED has the following meaning.

D5- STATE	INDICATION
Flashing RED	Not communicating to serial device
Flashing GREEN	Communicating to the serial device
Flashing mostly OFF (RED or GREEN)	Not communicating on Fieldbus
Flashing Mostly on (RED or GREEN)	Communicating on Fieldbus
Solid RED	Module failure

MODULE DIP SWITCHES

There is an 8 position DIP switch on the module. The 8 switches are used to set the network address on the fieldbus. These switches set an address in binary. A switch in the UP (OFF) position corresponds to a 1-bit.

Example: Address 05.

ADDRESS	SWITCH POSITION							
	1	2	3	4	5	6	7	8
05	$U p$	Dn	Up	Dn	Dn	Dn	Dn	Dn

If the switches are all DOWN (O VALUE), then the module will read the Fieldbus address from the EEPROM on the CompactCom module. This should also be used if the fieldbus address will be set over the network by a network configuration tool.

MODULE DIP SWITCHES, CONTINUED

The switches can be used to reset all configurable parameters in the DDOOO to factory default values, and to erase the user application. If the switches are all up (255 value) on power up, the status LED (D5) will flash red for 5 seconds, and on the diagnostic port the message "Change Switches to Reset to Factory Defaults" displays. Changing any switch value at this time will reset the module to a factory default state. If the switches remain unchanged, the module will start with a switch value of 255.
The meaning of the address and the valid range is fieldbus specific. Refer to the specific fieldbus supplement for the exact meaning of the dip switch settings.

SERIAL COMMUNICATIONS SETTINGS

The communications settings for the serial port is configured for the application. The module is configured by default with the following settings.

PORT	BAUD	DATA BITS	PARITY	FUNCTION
Port B, J16	115200	8	None	Generic setting

Many of the serial settings can be configured through the diagnostic port. These include enabling or disabling the Generic Serial driver on each port, defining the buffers sizes for the Generic Serial driver, and setting the communication parameters, including BAUD rate and parity. Some settings can only be configured through a user application, including enabling MODBUS master functionality or custom serial protocols on a serial port.

HARDWARE SPECIFICATIONS

Power	$9-40$ VDC (24 VDC Nominal)
Power Consumption	300 mA typical 800 mA max (@24 VDC)
Interface connections	Fieldbus as selected, serial channel
LEDs/Instruments	Power, Network connection
Operating Temperature	$\mathbf{0}$ to 70 C
Storage Temperature	$\mathbf{- 4 0}$ to 85 C
Operating humidity	90% non-condensing
Enclosure rating	None
Mounting options	Thru holes
Others	RoHS
Physical Dimensions	4.24 inches x 3.20 inches
Approval	CE

SOFTWARE SPECIFICATIONS

Output Data Format to Gateway

The Gateway takes a Serial String and remap the data to the format needed for the Fieldbus type installed per the register.

- The following is the definition of the Serial String for one (1) scale.
- The Scale ID is extracted from Status Word 0.
- The data is placed in the appropriate Fieldbus Registers based on this scale ID.
- Status Word Data is sent as binary values MSB first over the Serial Channel.
- Weight data is sent as six (6) characters representing a 6-digit decimal value (000000-999999).
- This decimal value represents the weight multiplied by the scale factor, listed in Command/Status Word 1 bits 0-2.
- The serial string is a fixed length of fifty-seven (57) bytes.

STX character	1 byte, (02h)	
Status word 0	2 bytes,	(includes scale ID)
Status word 1	2 bytes,	
Status word 2	2 bytes,	
Unassigned data	6 characters	(default '000000')
Gross Weight	6 characters	(example '002340')
Tare Weight	6 characters,	
Net Weight	6 characters,	
Setpoint 1	6 characters,	
Setpoint 2	6 characters,	
Flow Rate	6 characters,	
Unassigned data	6 characters,	
CRC	1 byte,	
ETX character	1 byte	(03h)

SOFTWARE SPECIFICATIONS, CONTINUED

Note Weight Values sent over the Serial Channel will be represented in the Fieldbus registers based on the settings of bits 14 and 15 in STATUS WORD 0.

- If the data is set to be a 16 bit or 32 bit integer, then the register value will contain the integer value and the host must multiply this by the scale factor to get the actual weight.
- If it is set to be a 16 bit integer, and the integer value is greater then 65535 , a value of $\mathbf{0}$ is placed in the register.
- If the data is set to be FLOATING POINT, then the gateway will multiply the integer value received by the scale factor, and place the resulting 32 bit floating point value in the register.
- In this case the host does not use the scale factor to interpret the value.

INPUT DATA FORMAT FROM GATEWAY

The Gateway will send a string to the Serial Port reflecting data from the Fieldbus.
The following is the definition of the serial string for one (1) scale.

- The scale ID in the Fieldbus register for Command word 0 for a scale must be set to the correct value (1-4) before data for that scale will be sent over the serial channel.
- If the scale ID is set to the correct value, any time any data for this scale changes the data will be sent out the serial channel.
- Command word data is sent as binary values MSB first over the serial channel.
- Weight data is sent as six (6) characters representing a six (6) digit decimal value (000000-999999).
- This decimal value represents the weight multiplied by the scale factor listed in command/status word 1 bits 0-2.
- The serial string is a fixed length of $\mathbf{1 0 5}$ bytes.

INPUT DATA FORMAT FROM GATEWAY, CONTINUED

STX character
Command word 0
Command word 1
Command word 2
Setpoint 1 weight
Setpoint 2 weight
Tare Weight
Display Message 1
Display Message 2
Display Message 3
CRC
ETX character

1 byte,
2 bytes,
2 bytes,
2 bytes,
6 characters,
6 characters,
6 characters,
26 characters, 26 characters, 26 characters, 1 byte,
1 byte
(02h)
(includes scale ID)

Note Weight Values sent over the serial channel will represent data in the Fieldbus registers based on the settings of bits 14 and 15 in STATUS WORD 0.

- If the data is set to be a 16 bit or 32 bit integer, then the integer value in the register will be sent over the serial channel.
- If it is set to be 16 bit, the high order word will be ignored.
- If the data is set to be floating point, then the floating point value will be multiplied by the scale factor and the integer portion of this resulting value will be sent over the serial channel.
- In all cases if the resulting integer is greater than 999999 , a value of 000000 will be sent over the Serial Channel.
- In all cases the scale must multiply the integer by the scale factor to determine the actual weight.

DISPLAY MESSAGES

A change in the Display Message Strings will not cause a serial string to be sent. The Display Message Strings will be sent when any data for a scale is changed (provided the Scale ID is set to the correct value for that scale).
Typically, this will happen when command word 2 bit 1 is set indicating the display messages are to be displayed. There is a maximum of 26 characters per line for the Display Message Strings.

Serial data is transferred according to the RS232 specification between the gateway and the FB2550. The communications parameters are listed below.

Baud	115,200
Data Bits	8
Parity	None
Stop Bits	1

J. Standard DT7000 Fieldbus Configuration

The DT7000 Fieldbus Module is a specialized component, so it requires different parameters than the standard Expansion Card default setups.
Follow these steps to program the DT7000 for Fieldbus Modules.
6. While in the WEIGH SCREEN, press the MENU button.
7. Select LOGIN.
8. Enter the Write Customer or Service Password.
9. Press the LOGIN button.

10. Open the CONFIGURATION MENU.
11. Press PAGE FORWARD once.
12. Open the CONFIGURE OUTPUTS option.
13. Select CONFIGURE COM4.

15. Select DT7000 ANYBUS.

J. Standard DT7000 Fieldbus Configuration, Continued

NOTE: The EtherNet/IP Module utilizes the DT7000 Interface. For complete programming details, see Appendix I: Fieldbus Interface Reference. For the complete data string programming details, see Appendix II: Data Output.
16. Answer YES to making the DT7000 Fieldbus the default setup.

17. Select SETTINGS.

18. Set these standard parameters.

BAUD RATE	$\mathbf{1 1 5 2 0 0}$
PARITY	NONE
DATA BITS	$\mathbf{8}$
STOP BITS	$\mathbf{1}$
CHECKSUM	SELECTED

19. Press the SAVE CHANGES button, returning to the CONFIGURE COM4 menu.

20. Select MIN/MAX.

21. Enter the Minimum Weight and the Maximum Weight amounts.

- These amounts determine the two "soft" setpoints that change one of the status bytes in the Fieldbus Output String.
- When exceeded, a byte is set.

- See APPENDIX I: STATUS/ COMMAND WORD 2.

22. Press the SAVE CHANGES button.

K. Fieldbus Data Representation

The following information shows the representation of data on all Fieldbuses. Each Fieldbus has input data (from the gateway/scales to the Fieldbus), and output data (from the Fieldbus to the gateway/scales).

ALL FIELDBUS TYPES OUTPUT MEMORY MAP

START ADDRESS	HEX	DECIMAL	SIZE
Scale 1	0	0	10 Words
Scale 2	14	20	10 Words
Scale 3	28	40	10 Words
Scale 4	$3 C$	60	10 Words
Scale Message Line 1	50	80	26 bytes
Scale Message Line 2	6 A	106	26 bytes
Scale Message Line 3	841	32	26 bytes
Unassigned	$9 E$	158	2 bytes
		Total:	160 bytes

START ADDRESS	HEX	DECIMAL	SIZE
Scale 1	0	0	20 Words
Scale 2	28	40	20 Words
Scale 3	50	80	20 Words
Scale 4	78	120	20 Words

Total: 160 bytes

OUTPUT DATA (WORD BYTE REGISTER USAGE)

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
0	$0-1$	Command Word 0	2	Scale 1
1	$2-3$	Command Word 1	2	
2	$4-5$	Command Word 2	2	
$3-4$	$6-9$	Setpoint 1	4	4
$5-6$	$10-13$	Setpoint 2	4	
$7-8$	$14-17$	Tare Weight	2	
9	$18-19$	Unassigned	Scale 2	
			2	
10	$20-21$	Command Word 0	2	
11	$22-23$	Command Word 1	2	
12	$24-25$	Command Word 2	2	
$13-14$	$26-29$	Setpoint 1	4	Scale 3
$15-16$	$30-33$	Setpoint 2	4	
$17-18$	$34-37$	Tare Weight	2	
19	$38-39$	Unassigned	2	
20	$40-41$	Command Word 0	2	
21	$42-43$	Command Word 1	2	
22	$44-45$	Command Word 2	2	4
$23-24$	$46-49$	Setpoint 1	4	4
$25-26$	$50-53$	Setpoint 2	Tare Weight	4
$27-28$	$54-57$	$58-59$	Unassigned	2

OUTPUT DATA (WORD BYTE REGISTER USAGE), CONTINUED

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
30	$60-61$	Command Word 0	2	Scale 4
31	$62-63$	Command Word 1	2	
32	$64-65$	Command Word 2	2	
$33-34$	$66-69$	Setpoint 1	4	
$35-36$	$70-73$	Setpoint 2	4	
$37-38$	$74-77$	Tare Weight	4	
39	$78-79$	Unassigned	2	
	$80-105$	Display Message Line 1	26	Scales
	$106-131$	Display Message Line 2	26	

INPUT DATA (WORD BYTE REGISTER USAGE)

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
0	$0-1$	Status Word 0	2	Scale 1
1	$2-3$	Status Word 1	2	
2	$4-5$	Status Word 2	2	
$3-4$	$6-9$	Unassigned	4	
$5-6$	$10-13$	Gross Weight	4	
$7-8$	$14-17$	Tare Weight	4	
$9-10$	$18-21$	Net Weight	4	
$11-12$	$22-25$	Setpoint 1	4	
$13-14$	$26-29$	Setpoint 2	4	
$15-16$	$30-33$	Flow Rate (weight /second)	4	
$17-19$	$34-39$	Unassigned	6	

INPUT DATA (WORD BYTE REGISTER USAGE), CONTINUED

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
20	$40-41$	Status Word 0	2	Scale 2
21	$42-43$	Status Word 1	2	
22	$44-45$	Status Word 2	2	
$23-24$	$46-49$	Unassigned	4	
$25-26$	$50-53$	Gross Weight	4	
$27-28$	$54-57$	Tare Weight	4	
$29-30$	$58-61$	Net Weight	4	
$31-32$	$62-65$	Setpoint 1	4	
$33-34$	$66-69$	Setpoint 2	4	
$35-36$	$70-73$	Flow Rate (weight /second)	4	
$37-39$	$74-79$	Unassigned	6	
40	$80-81$	Status Word 0	2	
41	$82-83$	Status Word 1	2	
42	$84-85$	Status Word 2	2	
$43-44$	$86-89$	Unassigned	4	
$45-46$	$90-93$	Gross Weight	4	
$47-48$	$94-97$	Tare Weight	4	
$49-50$	$98-101$	Net Weight	4	
$51-52$	$102-105$	Setpoint 1	4	
$53-54$	$106-109$	Setpoint 2	4	
$55-56$	$110-113$	Flow Rate (weight /second)	4	6

INPUT DATA (WORD BYTE REGISTER USAGE), CONTINUED

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
60	$120-121$	Status Word 0	2	Scale 4
61	$122-123$	Status Word 1	2	
62	$124-125$	Status Word 2	2	
$63-64$	$126-129$	Unassigned	4	
$65-66$	$130-133$	Gross Weight	4	
$67-68$	$134-137$	Tare Weight	4	
$69-70$	$138-141$	Net Weight	4	
$71-72$	$142-145$	Setpoint 1	4	
$73-74$	$146-149$	Setpoint 2	4	
$75-76$	$150-153$	Flow Rate (weight /second)	4	
$77-79$	$154-159$	Unassigned	6	

STATUS/COMMAND WORD BIT USAGE

Status / Command Word 0
bit Usage
$0 \quad$ Scale ID bits $0,1,2$
1 Scale $1=001$, Scale $2=010$, Scale $3=011$, Scale $4=100$
2
3 motion
4 over capacity gross weight = scale capacity
5 within 2% capacity
6 Enable Tare
7 Disable Tare
8 lb units
9 kg units
10 ton units
11 tonne units

14 Weight conversion, text to numeric (bits 14 and 15)
$15 \quad 01=32$ bit floating point
$10=32$ bit integer
$11=16$ bit integer

STATUS/COMMAND WORD BIT USAGE

Status / Command Word 1
bit Usage
0 Decimal Point Location bits 0, 1, 2
$1 \quad 000$ * $1.0 ; 001$ * $0.1 ; 010$ * $0.01 ; 011$ * $0.001 ; 100$ * 0.0001
2
3 Load Tare Command
4 Auto Tare Command
5 Load Setpoint 1
6 Load Setpoint 2
$7 \quad$ Zero Scale Command
8 Load Cell Status bits 8, 9, 10, 11, 12
$9 \quad$ All Good $=0$
10 Defective Cell = Cell Number Binary
11
12
13
14 Print Command
15 Beep

Status / Command Word 2

bit Usage
0 Display Message Command / Operator Acknowledge
1 Scale weight at or above Maximum weight
2 Scale weight at or below Minimum weight
3-15 Unused

STATUS/COMMAND WORD BIT USAGE, CONTINUED

SCALE ID
Command:
Status:

MOTION
Command:
Status:

OVER CAPACITY

Command:
Status: Indicates that the scale is at 105% of capacity. If this condition is true the gross weight is sent to the Fieldbus as the scale capacity.

WITHIN 2\% CAPACITY WORD 0 BIT 5

Command: Not applicable.
Status:
Scale is within a range of $+/-2 \%$ of capacity and zero.

ENABLE TARE

Command:
Status:
WORD 0 BIT 6
Enable keyboard tare or auto tare weight.
Status: Tare weight enabled.

DISABLE TARE

WORD 0 BIT 7

Command:
Status:
Tare weight disabled.

LB WEIGHT UNITS WORD 0 BIT 8

Command: \quad Switch scale to lb units.
Status: \quad Scale is indicating in lb units.

STATUS/COMMAND WORD BIT USAGE, CONTINUED

KG WEIGHT UNITS
WORD 0 BIT 9
Command: Switch scale to kg units.
Status: \quad Scale is indicating in kg units.

TON WEIGHT UNITS WORD 0 BIT 10

Command: Switch scale to ton units.
Status: \quad Scale is indicating in ton units.

TONNE WEIGHT UNITS WORD 0 BIT 11
Command: Switch scale to tonne units.
Status: \quad Scale is indicating in tonne units.

DECIMAL LOCATION WORD 1 BITS 0,1,2

Command: Used in integer to float weight conversions.
Status: Indicates location of decimal point in weight data.

LOAD TARE

WORD 1 BIT 3
Command: Load tare from tare memory address.
Status: \quad Switches to 1 after command is executed and returns to 0 when command is cleared.
AUTO TARE WORD 1 BIT 4
Command: Take current scale gross weight as tare value.
Status: \quad Switches to 1 after command is executed and returns to 0 when command is cleared.

LOAD SETPOINT 1 WORD 1 BIT 5

Command: Load setpoint 1 for this scale.
Status: \quad Switches to 1 when command is executed returns to zero when command is cleared.

STATUS/COMMAND WORD BIT USAGE, CONTINUED
 LOAD SETPOINT 2 WORD 1 BIT 6

Command: Load setpoint 2 for this scale.
Status: \quad Switches to 1 when command is executed returns to zero when command is cleared.

LOAD CELL STATUS WORD $1 \quad$ BITS 8,9,10,11,12

Command: Not applicable.
Status: All cells are when the value is zero, else data indicates the number of the failing or failed cell.

PRINT COMMAND: WORD 1 BIT 14

Command: Print scale ticket
Status: \quad Switches to 1 when the command is recognized and resets after the print cycle is complete and the command bit is reset.

BEEP

WORD 1 BIT 15
Command: Sound Instrument audible alarm.
Status: \quad Switches to 1 when command is executed, resets to 0 after the command bit is reset.

DISPLAY MESSAGE WORD 2 BIT 0

Command: Display message on Instrument display. Message loaded from display memory 1 to 3 lines.
Status: \quad Switches to 1 when the command is received and the message is displayed.
When scale operator operates any key, the message and bit are cleared.

SCALE ABOVE MAXIMUM WEIGHT WORD 2 BIT 1
Command: Not applicable.
Status: \quad Bit is set when scale weight is at or above the programmed value.

SCALE BELOW MINIMUM WEIGHT WORD 2 BIT 2

Command: Not applicable.
Status: \quad Bit is set when scale weight is at or below programmed value.

APPENDIX II: DATA OUTPUT

A. Remote Display Output

DATA FORMAT
$<$ STX $><A><0><$ SP/ $\rightarrow<$ XXXXXX><ETX>

NOTES:

1. Characters denoted by X are characters 0-9.
2. Leading zeroes are suppressed.
3. Polarity indication for a positive value is a space (SP).

- Negative values are not transmitted.

4. Identifier code $<4><0>=$ Gross weight.

- Transmission is Gross Only.

5. Transmission for the DEMAND Mode occurs when a carriage return (CR) HEX OD is received.
6. See APPENDIX V for more ID Codes.

B. Configure Output

The Continuous Computer Output is an uninitiated, unrequested output that gets transmitted at a fixed time interval.

FAIRBANKS/TOLEDO DATA FORMAT

<STX><A><C><GGGGGG><TTTTTT><CR>

NOTES:

STX - Start of Text character (02 Hex)
A - Status Word A
B - Status Word B
C - Status Word C
G (gross weight data) - xxxxxx Displayed Weight : x = Weight

- 6 characters if the graduation size does not have a decimal point.
- 5 characters if the graduation size does have a decimal point. The decimal point is not sent as part of the character string.
T (tare weight data) - xxxxxx Tare Value : $\mathrm{x}=$ Tare
- (6 characters if the graduation size does not have a decimal point.)
- (5 characters if the graduation size does have a decimal point.

The decimal point is not sent as part of the character string.

CR - Carriage Return Character: (0D hex)
CS - CheckSum Character: If enabled, this character consists of the last eight bits of the binary sum of all characters transmitted up to this checksum character.

B. Configure Output, Continued

STATUS CODE (WORD) A

Bit \#	X00	X0	\mathbf{X}	$\mathbf{X} . \mathbf{X}$	X.XX	X.XXX	X.XXXX	X.XXXXX
0	0	1	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1
2	0	0	0	0	1	1	1	1

FAIRBANKS/TOLEDO DATA FORMAT

INCREMENT SIZE

Bit \#		Count By 1		Count by 2		Count by 5
$\mathbf{3}$		1		0		1
$\mathbf{4}$		0		1		1
$\mathbf{5}$				Always Logic 1		
$\mathbf{6}$				Always Logic 0		
$\mathbf{7}$				Parity Bit		

STATUS CODE (WORD) B

Bit \#	Description			
$\mathbf{0}$		Gross = 0		Net = 1
$\mathbf{1}$		Positive $=0$		Negative = 1
$\mathbf{2}$		In Range $=0$		Overcapacity = 1
$\mathbf{3}$		No Motion = 0		Motion = 1
$\mathbf{4}$		Lb = 0		Kg = 1
$\mathbf{5}$		Always Logic 1		
$\mathbf{6}$		Normal $=0$		Power Up = 1
$\mathbf{7}$		Parity Bit		

B. Configure Output, Continued

STATUS CODE (WORD) C

Bit \#	Description			
$\mathbf{0}$		Always Logic $=0$		
$\mathbf{1}$		Always Logic $=0$		
$\mathbf{2}$		Always Logic $=0$		
$\mathbf{3}$		Normal $=0$		Print Switch Pushed = 1
$\mathbf{4}$		Always Logic $=0$		
$\mathbf{5}$		Always Logic $=0$		
$\mathbf{6}$		Normal $=0$		Keyboard Tare = 1
$\mathbf{7}$		Parity Bit		

CARDINAL 738 CONTINUOUS SCOREBOARD DATA FORMAT <CR><P><WWWWWW>Period (.)<m><SP><u><SP><g><SP><SP><ETX>

NOTES:

CR - Carriage return
P - Polarity (+ = Positive weight, - = Negative weight)
W - Displayed weight

- 6 characters if the graduation size does not have a decimal point.
- 5 characters if the graduation size does have a decimal point.
\mathbf{m} - Motion or $0=$ Overload
SP - Space
U - Units (lb = pounds, kg = kilograms)
\mathbf{g} - Gross or $\mathbf{n}=$ Net
ETX - End of text
- Leading zeros are not suppressed
- If division size has no decimal point, set the decimal to "trailing".
- If division size has a decimal point, set the decimal to "floating".

B. Configure Output, Continued
 WEIGHTRONIX DATA FORMAT
 <SP><G><WWWWWW><SP><U><U><CR><LF>

NOTES:

SP - Space
\mathbf{g} - Gross or $\mathbf{n}=$ Net
W - Displayed weight

- 6 characters if the graduation size does not have a decimal point.
- 5 characters if the graduation size does have a decimal point.

SP - Space
\mathbf{U} - Units (lb = pounds, $\mathrm{kg}=$ kilograms)
M - Motion
CR - Carriage return
LF - Line feed

- Leading zeros are not suppressed.
- There is no motion character.
- If division size has no decimal point, set the decimal to "trailing".
- If division size has a decimal point, set the decimal to "floating".

CONDEC CONTINUOUS DATA FORMAT
 <STX><SP><SP><WWWWWW><U><G><M><CR><LF>

NOTES:

STX - Start of Text character (02 Hex)
SP - Space
SP - Space
W - Displayed weight

- 6 characters if the graduation size does not have a decimal point.
- 5 characters if the graduation size does have a decimal point.
$-=$ negative weight
G - Gross; N = Net
M - Motion
CR - Carrage return.
- Leading zeros are not suppressed.
- If division size has no decimal point, set the decimal to "trailing".
- If division size has a decimal point, set the decimal to "floating".

C. SMA Protocol

SMA (Scale Manufactures Association)
The SMA developed a standard common output for all scale instrument manufacturers to use in the early 2000s so software would easily interface between devices.
The default for the SMA Protocol output is Demand mode, 115200 Baud, no parity, 8 data, 1 stop.

Example of the SMA Protocol output:
Scale division size 20, scale displaying 0 pounds.
Transmitting the polling characters to the 2550:

DATA OUTPUT FORMAT
 <LF(0A hex)><W(57 hex)><CR(0D hex)>

2550 response:

Byte 1 LF (0A hex)
Byte 2 Z (5A hex)
Byte 31 (31 hex)
Byte 4 G (47 hex)
Byte 5 Space (20 hex)
Byte 6 Space (20 hex)
Byte 7 Space (20 hex)
Byte 8 Space (20 hex)
Byte 9 Space (20 hex)
Byte 10 Space (20 hex)
Byte 11 Space (20 hex)
Byte 12 Space (20 hex)
Byte 13 Space (20 hex)
Byte 14 Space (20 hex)
Byte 15 Space (20 hex)
Byte 16 (30 hex)
Byte 17 I (6C hex)
Byte 18 b (62 hex)
Byte 19 Space (20 hex)

Byte 20 CR (0D hex)

STANDARD SCALE RESPONSE MESSAGE

Most of the host commands are responded to in the following message format. The only host commands that do not are the:
Diagnostic, ABout and INformation commands

$$
\begin{aligned}
& \text { <LF> <s> <r> <n> <m> <f> <xxxxxx.xxx> <uuu> <CR> } \\
& \text { where: <LF> Start of response message } \\
& \text { <s> scale status definition / example } \\
& \text { 'Z' Center of Zero <xxxxxx.xxx>= } 0.000 \\
& \text { 'O' Over Capacity <xxxxxx.xxx>= +weight } \\
& \text { 'U' Under Capacity <xxxxxx.xxx>=-weight } \\
& \text { 'E' Zero Error (clears when condition clears) } \\
& \text { 'I' Initial-Zero Error (if used, this error is } \\
& \text { maintained until zero condition is cleared) } \\
& \text { Tare Error (clears after being read) } \\
& \text { None of the above conditions } \\
& \text { Note: For ' } E \text { ', 'I', 'T' error conditions }
\end{aligned}
$$

D. Examples

Command

<LF>W<CR> <LF>W<CR> <LF>W<CR> <LF>H<CR> <LF>Z<CR> <LF>R<CR>

Response

The scale will repeat weight until next command is received.

APPENDIX III: 20MA CODES

CODE	UNITS	WEIGHT	SCALE \#
00 - Display all data			
40	Lbs	Gross	1
41	Lbs	Net	1
42	Lbs	Tare	1
43	Kg	Gross	1
44	Kg	Net	1
45	Kg	Tare	1
46	Lbs	Gross	2
47	Lbs	Net	2
48	Lbs	Tare	2
49	Kg	Gross	2
50	Kg	Net	2
51	Kg	Tare	2
52	Lbs	Gross	3
53	Lbs	Net	3
54	Lbs	Tare	3
55	Kg	Gross	3
56	Kg	Net	3
57	Kg	Tare	3
58	Lbs	Gross	4
59	Lbs	Net	4
60	Lbs	Tare	4
61	Kg	Gross	4
62	Kg	Net	4
63	Kg	Tare	4

Appendix III: 20 mA Codes, Continued

CODE	UNITS	WEIGHT	SCALE \#
64	Lbs	Gross	5
65	Lbs	Net	5
66	Lbs	Tare	5
67	Kg	Gross	5
68	Kg	Net	5
69	Kg	Tare	5
70	Lbs	Gross	6
71	Lbs	Net	6
72	Lbs	Tare	6
73	Kg	Gross	6
74	Kg	Net	6
75	Kg	Tare	6
76	Lbs	Gross	7
77	Lbs	Net	7
78	Lbs	Tare	7
79	Kg	Gross	7
80	Kg	Net	7
81	Kg	Tare	7
82	Lbs	Gross	8
83	Lbs	Net	8
84	Lbs	Tare	8
85	Kg	Gross	8
86	Kg	Net	8
87	Kg	Tare	8
99	Lbs	TOTAL	For FB2550

APPENDIX IV: TICKET DATA FIELDS

SCALE TICKET: TICKET NUMBER	Twenty-four (24) characters
<TICKET NO>: <Ticket\#>	Six (6) characters
GROSS LABEL: GROSS	Five (5) characters
<GROSS WT>: <Gross>	Six (6) characters
<GROSS UNITS>: Ib GR	Two (2) characters
DUAL UNITS GROSS LABEL:P GROSS	
<DUAL UNITS GROSS WT>: <Dual Units Gross>	
<DUAL UNITS GROSS UNITS>: <lb GR	
TARE LABEL: TARE	Four (4) characters
<TARE WT>: <Tare>	Six (6) Characters
<TARE UNITS>: Ib TA	Two (2) characters
DUAL UNITS TARE LABEL: TARE	
DUAL UNITS TARE WT>: <Dual Units Tare>	
<DUAL UNITS TARE UNITS>: Ib TA	
NET LABEL: NET	Three (3) characters
<NET WT>: <Net>	Six (6) characters
<NET UNITS>: Ib NT	Two (2) characters
DUAL UNITS NTET LABEL: NET	
<DUAL UNITS NET WT>: <Dual Units Net>	
<DUAL UNITS NET UNITS>: Ib GR	
INBOUND LABEL: INBOUND	Seven (7) characters
<INBOUND WT>: <lnbound>	Six (6) characters
<INBOUND UNITS>: Ib GR	Six (6) characters
<DUAL UNITS INBOUND WT>: <Dual Units Inbound>	
<DUAL UNITS GROSS UNITS>: <lb GR>	
<DATE>: <Date>	Ten (10) characters
<TIME>: <Time>	Eight (8) characters
<SCALE ID>: <SCALE ID>	Eleven (11) characters
<LOOP ID LABEL>: LOOP ID	Twenty (20) characters
<LOOP ID>: <Loop ID>	Sixteen (16) characters
<DATE IN>: <Date In>	Ten (10) characters
<TIME IN>: <Time In>	Eight (8) characters
<SCALE ID IN>: <Scale ID In>	Eleven (11) characters
PRODUCT LABEL: LABEL	Twenty-four (24) characters
<PRODUCT ID>: <Product ID>	Sixteen (16) characters
<CONVERSION LABEL>: Conversion Name	Sixteen (16) characters
<CONVERSION>: <Conversion>	Seven (7) characters
<CONVERSION 2 LABEL>: Conversion 2 Name	
<CONVERSION 2>: Conversion 2	

Ticket Data Fields, Continued

<PRODUCT TOTAL WT>: <Prod Tot Wt>	Six (6) characters
<PRODUCT TOTAL UNITS>: <Prod Tot Units>	Two (2) characters
<DUAL UNITS PROD TOT WT>: < Dual Units Prod Tot Wt>	
DUAL UNITS PROD TOT UNITS>: < Dual Units Prod Tot Un>	
CUSTOMER LABEL: CUSTOMER	Twenty-four (24) characters (caption is editable from ticket format)
<CUSTOMER ID>: <Customer ID>	Sixteen (16) characters
<CUSTOMER LINE 1/2/3/4> : <Customer Line 1/2/3/4>	Forty (40) characters
CUSTOMER TOTAL LABEL: CUSTOMER TOTAL	Twenty-four (24) characters (caption is editable from ticket format)
<CUSTOMER TOTAL WT>: <Cust Tot Wt>	Six (6) characters
<CUSTOMER TOTAL UNITS>: <Cust Tot Units>	Two (2) characters
<DUAL UNITS CUST TOT WT>: <Dual Units Cust Tot Wt>	
<DUAL UNITS CUST TOT UNITS>: <Dual Units Cust Tot Un>	
VEHICLE TYPE: VEHICLE TYPE	Twenty-four (24) characters (caption is editable from ticket format)
<VEHICLE DESCRIPTION>: <Vehicle Description>	Thirty-two (32) characters
<LOCATION ID>: <Location ID>	Fifteen (15) characters
<LOCATION NAME/ADDRESS/ CITY STATE/PHONE NMR>: <Location Name/Address/ City State/Phone Nbr>	Sixty-four (64) characters
<LOCATION PHONE NBR>: <Location Phone NBR>	Twenty (20) characters
<PROMPT1 LABEL thru PROMPT10 LABEL>: PROMPT 1 thru PROMPT 10	Twenty (20) characters
<PROMPT1 thru PROMPT10>: <Prompt 1 thru Prompt 10>	
ALL TEXT FIELDS	Twenty-four (24) characters
DUPLICATE COPY LABEL: (DUPLICATE COPY)	
TEXT 1: TEXT 1 thru TEXT 20: TEXT 20	
IMAGE 1: IMAGE 1 and IMAGE 2: IMAGE 2	

APPENDIX V: REMOTE FUNCTION COMMANDS

HARDWARE CONNECTIONS

REMOTE FUNCTIONS	CN14	
Remote Zero Switch	3	11 or 12
Remote Print Switch	9	11 or 12

- These must be Dry Contacts only.
- The I/O Accessory must be installed.

REMOTE SOFTWARE COMMANDS

Remote software commands using Serial Port/ Mapped Memory/ Multicast.

FUNCTION	
Zero Active Scale	\mathbf{Z}
Zero ALL Scales	\mathbf{z}
Zero a Specific Scale	Z\# (where \# is the Scale Number)
Zero Scales 1-4	ZA
Zero Scales 5-8	ZB
Set Tare on Active Scale	Txxxxx (where xxxxx is the Tare Weight value)
Set Tare on a Specific Scale	T\#, xxxxx (were \# is the Scale Number, and xxxxx is Tare Weight Value)
AutoTare on Active Scale	A
Change Units on Active Scale	\mathbf{U}
Change Units on ALL Scales	\mathbf{u}
Change Unites on Specific Scale	U\# (where \# is Scale Number)
Print Active Scale	\mathbf{P}
Change to Multi-screen	\mathbf{m}
Change to GTN Screen	\mathbf{g}
Select Active Scale	S\# (where \# is the Scale Number)

APPENDIX VI: FIELDBUS REFERENCE

DT7000 GATEWAY

The DT7000 Communication I/O Gateway is a module that provides access between Industrial Networks and the serial device(s).

- The DT7000 utilizes one of the available Anybus Compact COM Modules for the desired Fieldbus.
- The Fieldbus Interface(s) support a bi-directional communication capability for the Instrument.
- The FB2550 Interface supports a variety of Industrial Protocols.

The following Fieldbus Networks are supported by the DT7000.

- Profibus-DP
- EtherNet/IP
- ControlNet
- DeviceNet
- MODBUS-TCP

MODULE LAYOUT

The image below shows the module layout.

INPUT POWER

The DT7000 requires Input Power of 9 to 40 VDC (24VDC normally) at the Terminal Block Connector (J-19).
See the cart below for Input Power connections.

J19 PIN	SIGNAL
1	PE
2	+V
3	-V

DT7000 SERIAL PORT CONNECTIONS

The DT7000 has four (4) serial ports.
Only Port B J16 is used.

See the two following tables for connecting serial devices to the DT7000.
RS232

PORT B (J16)	SIGNAL
1	GND
2	RX
3	TX
4	GND
5	ENB

If the ENB Signal on the RS232 connector is tied to the Ground, the RS232 is active, and the RS485 is disabled. If not, the RS485 is active, and the RS232 is disabled.

- Connect pins four and five (4 \& 5) on the RS232 (J12, J4) to enable RS232.

FIELDBUS CONNECTION

The Fieldbus connects to the Anybus-CompactCOM Module.

- This connector is Fieldbus-specific.
- There are also LEDs on this module.

MODULE INDICATORS

Listed below are the four power LEDs on the module.

REF	GREEN	RED
D1	+24 POWER OK	REVERSE INPUT POWER
D2	+5V POWRE OK	RESETTLE FUSE TRIPPED
D3	+3.3V POWER OK	--
D4	I/O POWER OK	REVERSE I/O POWER

D1 indicates 24 V power is applied to the module. D2 and D3 indicate the internal voltages are being generated. All (3) LEDs will be on green when the module is operating properly. D4 indicates the I/O power is applied to the module and will be illuminated green when $1 / 0$ power is present.
There is a red/green dual color status LED (D5) on the module. On power up the LED flashes alternately red and green to indicate the module is starting up. Once the module is initialized, the status LED has the following meaning.

D5- STATE	INDICATION
Flashing RED	Not communicating to serial device
Flashing GREEN	Communicating to the serial device
Flashing mostly OFF (RED or GREEN)	Not communicating on Fieldbus
Flashing Mostly on (RED or GREEN)	Communicating on Fieldbus
Solid RED	Module failure

MODULE DIP SWITCHES

There is an 8 position DIP switch on the module. The 8 switches are used to set the network address on the fieldbus. These switches set an address in binary. A switch in the UP (OFF) position corresponds to a 1-bit.

Example: Address 05.

ADDRESS	SWITCH POSITION							
	1	2	3	4	5	6	7	8
05	$U p$	Dn	Up	Dn	Dn	Dn	Dn	Dn

If the switches are all DOWN (O VALUE), then the module will read the Fieldbus address from the EEPROM on the CompactCom module. This should also be used if the fieldbus address will be set over the network by a network configuration tool.

MODULE DIP SWITCHES, CONTINUED

The switches can be used to reset all configurable parameters in the DDOOO to factory default values, and to erase the user application. If the switches are all up (255 value) on power up, the status LED (D5) will flash red for 5 seconds, and on the diagnostic port the message "Change Switches to Reset to Factory Defaults" displays. Changing any switch value at this time will reset the module to a factory default state. If the switches remain unchanged, the module will start with a switch value of 255.
The meaning of the address and the valid range is fieldbus specific. Refer to the specific fieldbus supplement for the exact meaning of the dip switch settings.

SERIAL COMMUNICATIONS SETTINGS

The communications settings for the serial port is configured for the application. The module is configured by default with the following settings.

PORT	BAUD	DATA BITS	PARITY	FUNCTION
Port B, J16	115200	8	None	Generic setting

Many of the serial settings can be configured through the diagnostic port. These include enabling or disabling the Generic Serial driver on each port, defining the buffers sizes for the Generic Serial driver, and setting the communication parameters, including BAUD rate and parity. Some settings can only be configured through a user application, including enabling MODBUS master functionality or custom serial protocols on a serial port.

HARDWARE SPECIFICATIONS

Power	9-40 VDC (24 VDC Nominal)
Power Consumption	300 mA typical 800 mA max (@24 VDC)
Interface connections	Fieldbus as selected, serial channel
LEDs/Instruments	Power, Network connection
Operating Temperature	$\mathbf{0}$ to 70 C
Storage Temperature	$\mathbf{- 4 0}$ to 85 C
Operating humidity	$\mathbf{9 0 \%}$ non-condensing
Enclosure rating	None
Mounting options	Thru holes
Others	RoHS
Physical Dimensions	$\mathbf{4 . 2 4}$ inches $\mathbf{x} \mathbf{3 . 2 0}$ inches
Approval	CE

SOFTWARE SPECIFICATIONS

Output Data Format to Gateway

The Gateway takes a Serial String and remap the data to the format needed for the Fieldbus type installed per the register.

- The following is the definition of the Serial String for one (1) scale.
- The Scale ID is extracted from Status Word 0.
- The data is placed in the appropriate Fieldbus Registers based on this scale ID.
- Status Word Data is sent as binary values MSB first over the Serial Channel.
- Weight data is sent as six (6) characters representing a 6-digit decimal value (000000-999999).
- This decimal value represents the weight multiplied by the scale factor, listed in Command/Status Word 1 bits 0-2.
- The serial string is a fixed length of fifty-seven (57) bytes.

STX character	1 byte, (02h)	
Status word 0	2 bytes,	(includes scale ID)
Status word 1	2 bytes,	
Status word 2	2 bytes,	
Unassigned data	6 characters	(default '000000')
Gross Weight	6 characters	(example '002340')
Tare Weight	6 characters,	
Net Weight	6 characters,	
Setpoint 1	6 characters,	
Setpoint 2	6 characters,	
Flow Rate	6 characters,	
Unassigned data	6 characters,	
CRC	1 byte,	
ETX character	1 byte	(03h)

SOFTWARE SPECIFICATIONS, CONTINUED

Note Weight Values sent over the Serial Channel will be represented in the Fieldbus registers based on the settings of bits 14 and 15 in STATUS WORD 0.

- If the data is set to be a 16 bit or 32 bit integer, then the register value will contain the integer value and the host must multiply this by the scale factor to get the actual weight.
- If it is set to be a 16 bit integer, and the integer value is greater then 65535, a value of $\mathbf{0}$ is placed in the register.
- If the data is set to be FLOATING POINT, then the gateway will multiply the integer value received by the scale factor, and place the resulting 32 bit floating point value in the register.
- In this case the host does not use the scale factor to interpret the value.

INPUT DATA FORMAT FROM GATEWAY

The Gateway will send a string to the Serial Port reflecting data from the Fieldbus.
The following is the definition of the serial string for one (1) scale.

- The scale ID in the Fieldbus register for Command word 0 for a scale must be set to the correct value (1-4) before data for that scale will be sent over the serial channel.
- If the scale ID is set to the correct value, any time any data for this scale changes the data will be sent out the serial channel.
- Command word data is sent as binary values MSB first over the serial channel.
- Weight data is sent as six (6) characters representing a six (6) digit decimal value (000000-999999).
- This decimal value represents the weight multiplied by the scale factor listed in command/status word 1 bits 0-2.
- The serial string is a fixed length of $\mathbf{1 0 5}$ bytes.

INPUT DATA FORMAT FROM GATEWAY, CONTINUED

STX character
Command word 0
Command word 1
Command word 2
Setpoint 1 weight
Setpoint 2 weight
Tare Weight
Display Message 1
Display Message 2
Display Message 3
CRC
ETX character

1 byte,
2 bytes,
2 bytes, 2 bytes, 6 characters, 6 characters, 6 characters, 26 characters, 26 characters, 26 characters, 1 byte,
1 byte
(02h)
(includes scale ID)

Note Weight Values sent over the serial channel will represent data in the Fieldbus registers based on the settings of bits 14 and 15 in STATUS WORD 0.

- If the data is set to be a 16 bit or 32 bit integer, then the integer value in the register will be sent over the serial channel.
- If it is set to be 16 bit, the high order word will be ignored.
- If the data is set to be floating point, then the floating point value will be multiplied by the scale factor and the integer portion of this resulting value will be sent over the serial channel.
- In all cases if the resulting integer is greater than 999999, a value of $\mathbf{0 0 0 0 0 0}$ will be sent over the Serial Channel.
- In all cases the scale must multiply the integer by the scale factor to determine the actual weight.

DISPLAY MESSAGES

A change in the Display Message Strings will not cause a serial string to be sent. The Display Message Strings will be sent when any data for a scale is changed (provided the Scale ID is set to the correct value for that scale).
Typically, this will happen when command word 2 bit 1 is set indicating the display messages are to be displayed. There is a maximum of 26 characters per line for the Display Message Strings.

Serial data is transferred according to the RS232 specification between the gateway and the FB2550. The communications parameters are listed below.

Baud	115,200
Data Bits	8
Parity	None
Stop Bits	1

FIELDBUS DATA REPRESENTATION

The following information shows the representation of data on all Fieldbuses. Each Fieldbus has input data (from the gateway/scales to the Fieldbus), and output data (from the Fieldbus to the gateway/scales).

ALL FIELDBUS TYPES OUTPUT MEMORY MAP

START ADDRESS	HEX	DECIMAL	SIZE
Scale 1	0	0	10 Words
Scale 2	14	20	10 Words
Scale 3	28	40	10 Words
Scale 4	3 C	60	10 Words
Scale Message Line 1	50	80	26 bytes
Scale Message Line 2	6 A	106	26 bytes
Scale Message Line 3	841	32	26 bytes
Unassigned	$9 E$	158	2 bytes
		Total:	160 bytes

START ADDRESS	HEX	DECIMAL	SIZE
Scale 1	0	0	20 Words
Scale 2	28	40	20 Words
Scale 3	50	80	20 Words
Scale 4	78	120	20 Words

OUTPUT DATA (WORD BYTE REGISTER USAGE)

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
0	$0-1$	Command Word 0	2	Scale 1
1	$2-3$	Command Word 1	2	
2	$4-5$	Command Word 2	2	
$3-4$	$6-9$	Setpoint 1	4	4
$5-6$	$10-13$	Setpoint 2	4	
$7-8$	$14-17$	Tare Weight	2	
9	$18-19$	Unassigned	Scale 2	
			2	
10	$20-21$	Command Word 0	2	
11	$22-23$	Command Word 1	2	
12	$24-25$	Command Word 2	2	
$13-14$	$26-29$	Setpoint 1	4	Scale 3
$15-16$	$30-33$	Setpoint 2	4	
$17-18$	$34-37$	Tare Weight	2	
19	$38-39$	Unassigned	2	
20	$40-41$	Command Word 0	2	
21	$42-43$	Command Word 1	2	
22	$44-45$	Command Word 2	2	4
$23-24$	$46-49$	Setpoint 1	4	4
$25-26$	$50-53$	Setpoint 2	Tare Weight	4
$27-28$	$54-57$	$58-59$	Unassigned	2

OUTPUT DATA (WORD BYTE REGISTER USAGE), CONTINUED

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
30	$60-61$	Command Word 0	2	Scale 4
31	$62-63$	Command Word 1	2	
32	$64-65$	Command Word 2	2	
$33-34$	$66-69$	Setpoint 1	4	
$35-36$	$70-73$	Setpoint 2	4	
$37-38$	$74-77$	Tare Weight	4	
39	$78-79$	Unassigned	2	
	$80-105$	Display Message Line 1	26	Scales
	$106-131$	Display Message Line 2	26	

INPUT DATA (WORD BYTE REGISTER USAGE)

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
0	$0-1$	Status Word 0	2	Scale 1
1	$2-3$	Status Word 1	2	
2	$4-5$	Status Word 2	2	
$3-4$	$6-9$	Unassigned	4	
$5-6$	$10-13$	Gross Weight	4	
$7-8$	$14-17$	Tare Weight	4	
$9-10$	$18-21$	Net Weight	4	
$11-12$	$22-25$	Setpoint 1	4	
$13-14$	$26-29$	Setpoint 2	4	
$15-16$	$30-33$	Flow Rate (weight /second)	4	
$17-19$	$34-39$	Unassigned	6	

INPUT DATA (WORD BYTE REGISTER USAGE), CONTINUED

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
20	$40-41$	Status Word 0	2	Scale 2
21	$42-43$	Status Word 1	2	
22	$44-45$	Status Word 2	2	4
$23-24$	$46-49$	Unassigned	4	
$25-26$	$50-53$	Gross Weight	4	
$27-28$	$54-57$	Tare Weight	4	
$29-30$	$58-61$	Net Weight	4	
$31-32$	$62-65$	Setpoint 1	4	
$33-34$	$66-69$	Setpoint 2	4	
$35-36$	$70-73$	Flow Rate (weight /second)	4	
$37-39$	$74-79$	Unassigned	6	
40	$80-81$	Status Word 0	2	
41	$82-83$	Status Word 1	2	
42	$84-85$	Status Word 2	2	
$43-44$	$86-89$	Unassigned	4	
$45-46$	$90-93$	Gross Weight	4	
$47-48$	$94-97$	Tare Weight	4	
$49-50$	$98-101$	Net Weight	4	4
$51-52$	$102-105$	Setpoint 1	4	
$53-54$	$106-109$	Setpoint 2	4	
$55-56$	$110-113$	Flow Rate (weight /second)	4	
$57-59$	$114-119$	Unassigned	4	

INPUT DATA (WORD BYTE REGISTER USAGE), CONTINUED

WORD	BYTE	REGISTER USAGE	SIZE(BYTES)	SCALE
60	$120-121$	Status Word 0	2	Scale 4
61	$122-123$	Status Word 1	2	
62	$124-125$	Status Word 2	2	
$63-64$	$126-129$	Unassigned	4	
$65-66$	$130-133$	Gross Weight	4	
$67-68$	$134-137$	Tare Weight	4	
$69-70$	$138-141$	Net Weight	4	
$71-72$	$142-145$	Setpoint 1	4	
$73-74$	$146-149$	Setpoint 2	4	
$75-76$	$150-153$	Flow Rate (weight /second)	4	
$77-79$	$154-159$	Unassigned	6	

STATUS/COMMAND WORD BIT USAGE

Status / Command Word 0
bit Usage
$0 \quad$ Scale ID bits 0, 1, 2
1 Scale $1=001$, Scale $2=010$, Scale $3=011$, Scale $4=100$
2
3 motion
4 over capacity gross weight = scale capacity
5 within 2% capacity
6 Enable Tare
7 Disable Tare
8 lb units
9 kg units
10 ton units
11 tonne units

14 Weight conversion, text to numeric (bits 14 and 15)
$15 \quad 01=32$ bit floating point
$10=32$ bit integer
$11=16$ bit integer

STATUS/COMMAND WORD BIT USAGE

Status / Command Word 1
bit Usage
0 Decimal Point Location bits 0, 1, 2
$1 \quad 000$ * $1.0 ; 001$ * $0.1 ; 010$ * $0.01 ; 011$ * $0.001 ; 100$ * 0.0001
2
3 Load Tare Command
4 Auto Tare Command
5 Load Setpoint 1
6 Load Setpoint 2
7 Zero Scale Command
8 Load Cell Status bits 8, 9, 10, 11, 12
$9 \quad$ All Good $=0$
10 Defective Cell = Cell Number Binary
11
12
13
14 Print Command
15 Beep

Status / Command Word 2

bit Usage
0 Display Message Command / Operator Acknowledge
1 Scale weight at or above Maximum weight
2 Scale weight at or below Minimum weight
3-15 Unused

STATUS/COMMAND WORD BIT USAGE, CONTINUED

SCALE ID
WORD 0 BITS 0,1,2
Command: Changes Instrument display to applicable scale.
Status: \quad Value is the scale id if the scale is selected, from instrument keyboard or Fieldbus, else the value is zero.

MOTION

Command:
WORD 0 BIT 3

Status:
Not applicable.
Indicates that the scale senses motion.

OVER CAPACITY WORD 0 BIT 4

Command: Not applicable.
Status: Indicates that the scale is at 105% of capacity. If this condition is true the gross weight is sent to the Fieldbus as the scale capacity.

WITHIN 2\% CAPACITY WORD 0 BIT 5

Command: Not applicable.
Status:
Scale is within a range of $+/-2 \%$ of capacity and zero.

ENABLE TARE

Command:
WORD 0 BIT 6

Status:
Enable keyboard tare or auto tare weight.
Status: Tare weight enabled.

DISABLE TARE

WORD 0 BIT 7
Command:
Disable keyboard tare and auto tare weight.
Status:
Tare weight disabled.

LB WEIGHT UNITS WORD 0 BIT 8

Command: \quad Switch scale to lb units.
Status: Scale is indicating in lb units.

STATUS/COMMAND WORD BIT USAGE, CONTINUED

KG WEIGHT UNITS WORD 0 BIT 9
Command: Switch scale to kg units.
Status: \quad Scale is indicating in kg units.

TON WEIGHT UNITS WORD 0 BIT 10

Command: Switch scale to ton units.
Status: \quad Scale is indicating in ton units.

TONNE WEIGHT UNITS WORD 0 BIT 11
Command: Switch scale to tonne units.
Status: Scale is indicating in tonne units.

DECIMAL LOCATION WORD 1 BITS 0,1,2

Command: Used in integer to float weight conversions.
Status: Indicates location of decimal point in weight data.

LOAD TARE

WORD 1 BIT 3
Command: Load tare from tare memory address.
Status: \quad Switches to 1 after command is executed and returns to 0 when command is cleared.
AUTO TARE WORD 1 BIT 4
Command: Take current scale gross weight as tare value.
Status: \quad Switches to 1 after command is executed and returns to 0 when command is cleared.

LOAD SETPOINT 1 WORD 1 BIT 5

Command: Load setpoint 1 for this scale.
Status: \quad Switches to 1 when command is executed returns to zero when command is cleared.

STATUS/COMMAND WORD BIT USAGE, CONTINUED
 LOAD SETPOINT 2 WORD 1 BIT 6

Command: Load setpoint 2 for this scale.
Status: \quad Switches to 1 when command is executed returns to zero when command is cleared.

LOAD CELL STATUS WORD 1 BITS 8,9,10,11,12

Command: Not applicable.
Status: All cells are when the value is zero, else data indicates the number of the failing or failed cell.

PRINT COMMAND: WORD 1 BIT 14

Command: Print scale ticket
Status: \quad Switches to 1 when the command is recognized and resets after the print cycle is complete and the command bit is reset.

BEEP

WORD 1 BIT 15
Command: Sound Instrument audible alarm.
Status: \quad Switches to 1 when command is executed, resets to 0 after the command bit is reset.

DISPLAY MESSAGE WORD 2 BIT 0

Command: Display message on Instrument display. Message loaded from display memory 1 to 3 lines.
Status: \quad Switches to 1 when the command is received and the message is displayed.
When scale operator operates any key, the message and bit are cleared.

SCALE ABOVE MAXIMUM WEIGHT WORD 2 BIT 1
Command: Not applicable.
Status: \quad Bit is set when scale weight is at or above the programmed value.

SCALE BELOW MINIMUM WEIGHT WORD 2 BIT 2

Command: Not applicable.
Status: \quad Bit is set when scale weight is at or below programmed value.

Recommended Instrument Settings

Noted below are three recommended settings for optimum performance with the FB2550 Instrument for fieldbus configuration.

A. Always Update, Yes

23. In the Service Menu, open SERVICE OPTIONS, then select DISPLAY RATE.

$\checkmark \quad$ Default $=0.1$
 $\checkmark \quad$ Always Update $=$ YES

B. Filter Off

24. In the SERVICE MENU, open SERVICE SCALES, select SCALE ID X, open
CALIBRATION, then select CALIBRATION DATA.
25. Press PAGE FORWARD twice.
$\checkmark \quad$ Filter Factor $=$ OFF

C. Expansion Filtering, Disabled

26. In the EXPANSION CARDS MENU, open the available card to be configured.
$\checkmark \quad$ Update Rate $=100$
\checkmark Sample Rate $=120$ samples/sec.
$\checkmark \quad$ Filtering $=$ Disabled

FB2550 Inhound/Outhound Series Operator Manual

FAIRBANKS

Manufactured by Fairbanks Scales, Inc.
821 Locust Street
Kansas City, MO 64106
www.fairbanks.com

[^0]: * RS485 is selected when RS422 output is required. Reference wiring and jumper connections in Section 5: Serial Communication Wiring.

[^1]: IMPORTANT NOTE: An External Keyboard Accessory (31036 or 25498) is necessary for inputting tares, editing customers and products, and entering alphabetic text.

